首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ceutorhynchus scrobicollis is a root-crown mining weevil proposed for release as biological control agent of Alliaria petiolata (Brassicaceae, Thlaspideae), a European biennial herb, currently invading temperate North America. Using a combination of laboratory, common garden and fieldwork we studied biology, ecology and host range of C. scrobicollis, a univoltine species that oviposits and develops in A. petiolata rosettes in fall and spring. Individual C. scrobicollis can be long-lived (>2 years) and females show a second oviposition period. Weevils did not attack any of 31 test plant species outside the Brassicaceae. Within the Brassicaceae, five species allowed complete larval development under no-choice conditions. In subsequent choice tests, three of these five species (Nasturtium officinale, Peltaria alliacea and Thlaspi arvense; which are of European origin) were attacked. North American Rorippa sinuata was the only native species to be attacked by C. scrobicollis and only under no-choice conditions. Results of subsequent impact experiments showed that C. scrobicollis attack changed plant architecture but had no effect on overall plant vigour and reproductive output of R. sinuata, suggesting lack of impact on demography or population dynamics. A petition for field release of C. scrobicollis in North America has been submitted.  相似文献   

2.
Linaria vulgaris, common or yellow toadflax, and Linaria dalmatica, Dalmatian toadflax (Plantaginaceae), are Eurasian perennial forbs invasive throughout temperate North America. These Linaria species have been the targets of classical biological control programmes in Canada and the USA since the 1960s. The first effective toadflax biological control agent, the stem‐mining weevil Mecinus janthinus (Coleoptera: Curculionidae) was introduced from Europe in the 1990s. This weevil has become established on L. dalmatica and L. vulgaris in both countries, although it has shown greater success in controlling the former toadflax species. Genetic and ecological studies of native range M. janthinus populations revealed that weevils previously identified as a single species in fact include two cryptic species, now recognised as M. janthinus, associated with yellow toadflax, and the recently confirmed species Mecinus janthiniformis, associated with Dalmatian toadflax. The results of a comprehensive study characterising haplotype identities, distributions and frequencies within M. janthinus s.l. native range source populations were compared to those populations currently established in the USA and Canada. The presence of both Mecinus species in North America was confirmed, and revealed with a few exceptions a high and consistent level of host fidelity throughout the adopted and native ranges. Genetic analysis based on mitochondrial cytochrome oxidase subunit II gene (mtCOII) defined the origin and records the subsequent North American establishment, by haplotype, of the European founder populations of M. janthinus (northern Switzerland and southern Germany) and M. janthiniformis (southern Macedonia), and provided population genetic indices for the studied populations. This analysis together with existing North American shipment receipt, release and rearing records elucidates probable redistribution routes and sources of both weevil species from initially released and established adopted range populations.  相似文献   

3.
In an unusual case involving a candidate biological control agent, the histologically complex stem galls of the weevil, Rhinusa pilosa (Coleoptera: Curculionidae) on yellow toadflax (Linaria vulgaris), are rapidly induced during oviposition and reach full size by larval hatch. To investigate gall induction, the oviposition behavior of R. pilosa was described. We experimentally disrupted ovipositing weevils at three key points in the oviposition sequence and compared host-plant tissue responses post disruption, to what occurs during normal gall induction using histological methods. De novo xylem production, intercellular spaces in the cortex, and hyperplasia and hypertrophy of the procambium and pith parenchyma surrounding the egg were some of the tissue- and cellular-level modifications observed only 3?C5?days after normal oviposition. Normal gall development was not observed after any of the oviposition disruption treatments, although some of the cellular and tissue responses resembled those found after undisrupted oviposition. Feeding by the female during oviposition canal formation induced wound meristem and callus tissue formation, but no other modifications consistent with gall formation. When females were disrupted about 20?s into oviposition, a homogenously dense substance was observed, which was suspected to be ovipositional fluid. There was minor stem swelling 10?days later and histologically, periclinal cell divisions, de novo xylem, and pith cells with numerous stained plastids were observed as in normal gall development, thus suggesting that ovipositional fluid plays a role in gall induction.  相似文献   

4.
《Biological Control》2006,36(1):80-90
Water chestnut, Trapa natans, has become a major invasive plant in shallow water bodies in the northeastern United States. The failure of chemical and mechanical means to provide long-term and economically sustainable suppression of the species resulted in interest in the development of biological control. Field surveys in Asia and Europe identified a number of potential biological control agents in the native range of T. natans. The most promising species appeared to be the leaf beetle Galerucella birmanica, which is considered a pest of farmed T. natans in China. However, initial attempts to develop biological control faltered when field observations in China suggested that G. birmanica may not be host specific. Of particular concern was attack on water shield, Brasenia schreberi, a species native to China and North America. We conducted a number of laboratory and field investigations in China to assess preference and performance of G. birmanica on T. natans and B. schreberi. Initial no-choice experiments using 19 different plant species in 13 different families demonstrated that G. birmanica oviposited and was able to complete development only on Trapa spp. and B. schreberi. In larval no-choice tests G. birmanica was able to complete development on B. schreberi, however, larvae showed a 20% increase in mortality and longer development time compared to larvae developing on T. natans. In laboratory and field choice tests adults strongly preferred T. natans and in the field only occasionally laid eggs on B. schreberi. In addition, adults emerging from larvae reared on B. schreberi were less fit with reduced feeding and a declining oviposition rate. Their strong preference for T. natans was maintained in the field, even when T. natans was completely defoliated and adults were forced to migrate. We found only occasional “spill-over” of beetles onto B. schreberi and our data indicate that G. birmanica is a more promising biological control agent of T. natans than previously thought, although additional host specificity tests with many more North American plant species need to be completed.  相似文献   

5.
Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with A max at 273, 332 nm (R t 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed.  相似文献   

6.
In weed biological control programs, pre-release host-specificity testing relies traditionally on no-choice and choice feeding, oviposition, and development tests. Rarely have they included detailed examination of behavioral responses to olfactory and visual cues of biological control candidates, although a better understanding of the mechanisms underlying host recognition may explain potential discrepancies between choice and no-choice tests, and/or between tests conducted in the lab versus field conditions. We investigated how the seed-feeding weevil, Mogulones borraginis, distinguishes its host plant, Cynoglossum officinale, from three native confamilial non-target species in North America. In behavioral bioassays, M. borraginis responded to olfactory and visual cues individually and, to an even greater extent, to both plant cue modalities when offered simultaneously. In tests with the combined cues, M. borraginis was attracted to C. officinale but responded with indifference or was repelled by non-target plants. In electrophysiological experiments, we identified that M. borraginis responded to ten volatile compounds and four wavelengths of lights from inflorescences of C. officinale. We propose that studies of responses to multimodal plant cues can advance our understanding of how biocontrol candidate species discriminate among host plants and closely related non-target species, thereby increasing the accuracy of environmental safety assessments pre-release.  相似文献   

7.
The potential of the leaf beetle Charidotis auroguttata as a biocontrol agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed in Australia, and risk to non-target plants was evaluated under quarantine conditions. In no-choice tests, C. auroguttata adults and larvae fed on many plant species across different families, but egg to adult development occurred only on the target weed. However, when neonate larvae from the target weed were transferred onto Myoporum boninense australe (Myoporaceae), a non-target native plant, 11.7% completed development, as compared to 95% of larvae that completed development on the target weed. Larval development on this non-target species also took twice as long as on the target weed. No larvae completed development on other test plants. In choice tests, leaf area consumption by adults and larvae was significantly more on the target weed than on other plants, and oviposition occurred only on the target weed. In the no-choice demography trials, adults laid eggs from the second week after emergence on the target weed, with an average of 0.286 eggs/female/day, resulting in an 18-fold increase in the adult population over 16 weeks. On My. boninense australe adult survival remained high, but oviposition commenced only from the 10th week after emergence with an average of 0.023 eggs/female/day, and none of the eggs developed into adults. In the choice demography trials, oviposition on the target weed was evident from the fourth week onwards, while on the non-target plant oviposition commenced only from the 14th week. Only 10% of total adults and 11.3% of total eggs were found on the non-target plant, and none of these eggs developed into adults. Although the biocontrol agent can ‘spill-over’ from the target weed to the non-target native plant and cause adult feeding damage, the non-target plant could not sustain a viable insect population on its own. This agent was not approved for field release in Australia due to perceived risk to non-target species.  相似文献   

8.
Fallopia japonica (Houttuyn) Ronse Decraene (Polygonaceae) is a serious invasive weed in North American and Europe. In its native China, a leaf-rolling weevil, Euops chinesis (Coleoptera: Attelabidae) was found attacking F. japonica in the field. No-choice tests, multiple-choice tests, open field tests and field surveys were conducted as a measure of its host specificity. Forty-six plant species were selected from 17 families for host range testing, among which, six species, F. multiflora, F. japonica, Persicaria perfoliata, Rumex acetosa, R. japonicus and R. aquaticus, were exposed to adults in no-choice tests. However, larvae could only develop successfully on F. japonica, and this plant appeared to be the only host in the field, suggesting the weevil is host-specific. As larval development appears to depend on a fungus in the leaf rolls, the insect–fungus mutualism and risks including host specificity of the fungus should be evaluated before the insect’s introduction.  相似文献   

9.
Invasive plant species impact both ecosystems and economies worldwide, often by displacing native biota. Many plant species exude/emit compounds into the surrounding environment with minor consequences in their native habitat due to a long coevolutionary history. However, upon introduction to ecosystems naïve to these compounds, unpredictable interactions can manifest. The majority of the putative allelochemicals studied have been root exudates, despite the large number of plant species that emit volatile organic compounds. We quantified the concentrations and ecological consequences of volatile monoterpenes from the North American invasive perennial Artemisia vulgaris. Ambient monoterpene-mixing ratios inside an A. vulgaris canopy were 0.02–4.15 ppbv in May and 0.01–0.05 ppbv in August, but were negligible (below instrument detection limit of 0.01 ppbv) 10 m away. Foliar disturbance increased total monoterpene concentration to a maximum of 27 ppbv. However, this level remains 1,000-fold lower than that shown to be phytotoxic to sensitive species in laboratory assays. In contrast, soil monoterpene concentrations were >74-fold higher inside [≤35 ± 11 ng g?1 (SDW)] and 19-fold higher at the edge [9 ± 3 ng g?1 (SDW)], compared to outside the A. vulgaris stand [0.48 ± 0.05 ng g?1 (SDW)]. A common native competitor species, Solidago canadensis, grown in pots and resident soil in situ yielded up to 50% less aboveground biomass inside as compared to outside the A. vulgaris stand. Activated carbon had no effect on greenhouse-grown S. canadensis performance when grown with A. vulgaris, suggesting root-derived exudates are not responsible for field observations. Results from this study suggest that A. vulgaris-derived monoterpenes have little direct activity in their volatile gaseous state, but are concentrated in the soil matrix within and bordering the A. vulgaris stand, thereby reducing interspecific performance and potentially fostering the subsequent local invasion of this species.  相似文献   

10.
The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant compounds that elicit oviposition and feeding responses. Non-target species that possess the same behavioral cues as found in the target weed may be at risk of damage by classical biological control agents. Here we conducted host range tests and examined secondary plant compounds of several test plant species. We studied the specialist herbivore Nystalea ebalea (Lepidoptera: Notodontidae) a Neotropical species, present in Florida as a surrogate biological control agent of the weed, Brazilian peppertree Schinus terebinthifolia, invasive in Florida and Hawaii. We found that the larvae had the greatest survival when fed the target weed, the Neotropical species Spondias purpurea, the Florida native species Rhus copallinum, and the ornamental Pistacia chinensis. Reduced survival and general larval performance were found on the native species Metopium toxiferum and Toxicodendron radicans. Both the volatiles and the allergen urushiols were chemically characterized for all species but urushiol diversity and concentration best predicted host range of this herbivore species. These results provide insight into host selection and utilization by one oligophagous Schinus herbivore. Other potential biological control agents may also be sensitive to plants that contain urushiols and if so, they may pose minimal risk to these native species.  相似文献   

11.
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), so far the only agent released, has become established in South Africa with recent reports of severe damage at a few field sites. To evaluate the insect’s suitability for release in New Zealand, host-specificity testing was carried out in South Africa in laboratory and open-field trials, with selected cultivated and native species of Solanum from New Zealand. No-choice tests confirmed the results of earlier trials that none of the three native New Zealand Solanum species are acceptable as hosts. Although the cultivated Solanum muricatum Aiton and S. quitoense Lam. also proved unacceptable as hosts, some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Although eggplant was routinely accepted under laboratory no-choice conditions in this and previous studies, observations in the native and introduced range of G. decoris, open-field trials and risk assessment based on multiple measures of insect performance indicate that the insect has a host range restricted to S. mauritianum. These results strongly support the proposed release of G. decoris in New Zealand because risks to non-target native and cultivated Solanum species appear to be negligible. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority. Handling editor: John Scott.  相似文献   

12.
A combined taxonomic, morphological, molecular and biological study revealed that stem‐galling weevils from the genus Rhinusa associated with toadflaxes from the genus Linaria (Plantaginaceae) are composed of three different species: Rhinusa pilosa, Rhinusa brondelii and Rhinusa rara sp.n. The authentic field host plants are respectively, Linaria vulgaris, Linaria purpurea and Linaria genistifolia/ Linaria dalmatica. These weevil species can be distinguished from each other by a few subtle morphological characteristics, mainly in the shape of the rostrum and of the integument. An analysis of the mitochondrial [cytochrome oxidase subunit II gene (COII) and 16S ribosomal RNA gene (16S)] and nuclear (elongation factor‐1α, EF‐1α) sequence data revealed high genetic divergence among these species. Uncorrected pairwise distances on mtCOII gene were 14.3% between R. pilosa and R. brondelii, 15.7% between R. pilosa and R. rara, while R. brondelii and R. rara were approximately 11% divergent from each other. Divergences obtained on 16S and nuclear EF‐1α genes were congruent. However, substantial intraspecific mitochondrial divergence was recorded for all studied populations of R. pilosa s.s. showing two mtDNA lineages, with estimated COII and 16S divergences of 4% and 1.6%, respectively. Nuclear pseudogenes (Numts) and Wolbachia influence, although recorded within both lineages, were excluded as possible causatives of the mtDNA divergence, while EF‐1α indicated absence of lineage sorting. Species from the R. pilosa complex are estimated to have diverged from each other approximately 7.2 million years ago (mya; late Miocene), while R. brondelii and R. rara diverged from each other about 4.7 mya (early Pliocene). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:EEDD6248‐01DB‐4B4A‐B79D‐C5606393E3AA .  相似文献   

13.
The most critical step during a weed biological control program is determination of a candidate agent’s host range. Despite rigorous protocols and extensive testing, there are still concerns over potential non-target effects following field releases. With the objective to improve risk assessment in biological control, no-choice and choice testing followed by a multiple generation study were conducted on the leaf-defoliator, Paectes longiformis Pogue (Lepidoptera: Euteliidae). This moth is being investigated as a biological control agent of Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), which is one of the worst invasive plant species in Florida, USA. Results from no-choice testing showed higher larval survival on S. terebinthifolia (48 %) and its close relative Schinus molle L. (47 %), whereas lower survival was obtained on six non-target species (<25 %). When given a choice, P. longiformis females preferred to lay eggs on the target weed, but oviposition also occurred on four non-target species. An improved performance on the native Rhus aromatica Aiton was found when insects were reared exclusively on this non-target species for one or two generations. Results from host range testing suggest that this moth is oligophagous, but has a preference for the target weed. Non-target effects found during multiple generation studies indicate that P. longiformis should not be considered as a biological control agent of S. terebinthifolia.  相似文献   

14.
Rearing techniques and results of preliminary host range tests are reported forHadena perplexa (Denis & Schiffermuller) (Lep.: Phalaenidae) a candidate biocontrol agent against the weed bladder campion,Silene vulgaris (Moench) Garcke, in Manitoba, Canada. In the laboratory, it was necessary to pipette a 15% honey solution in water into the flowers as food for the adult moths. When reared singly to avoid cannibalism, 56% of the 1st instar larvae developed to pupae. Larvae fed on a natural diet for 10 days can then be reared on either one of 2 artificial diets. Choice oviposition tests and no-choice larval feeding tests were conducted with plant species closely related toS. vulgaris in the generaSilene, Dianthus, Gypsophila, Lychnis, Saponaria. Species in 4 of 5 of these genera were accepted for oviposition, and species in all 5 genera supported the development of 1st instar larvae to the pupal stage.H. perplexa should not be introduced into Canada.   相似文献   

15.
Adult oviposition preferences are expected to correlate with host plant suitability for the development of their offspring. For most lepidopteran species, this is particularly important as the hatching neonate larvae of many species are relatively immobile. Thus, the site of oviposition chosen by a female adult can greatly influence the probability of survival for her offspring. In the present study, we investigated the oviposition preference of adult Trichoplusia ni moths for six plant species to determine whether they could accurately rank the suitability of the plants for larval development. We also compared oviposition preferences to neonate larval acceptance and preference to determine whether the adult host range matched that of larval diet breath. Our results indicate that in two-choice and no-choice tests adult T. ni were able to rank the plants accurately, with the exception of anise hyssop. However, when given a choice of all six plants together, they laid more eggs on a plant that was not suitable for larval survival. Larvae accepted and fed on all plants in no-choice tests, and accurately ranked them according to larval performance. We conclude that neonate larvae are better able than adults to rank plants according to larval performance, and that larval diet breadth is wider than the range of plants accepted by adults. We also provide a discussion of the reduced accuracy of adult oviposition preference with increased plant choices.  相似文献   

16.
A biological control program has been initiated against European swallow-worts Vincetoxicum nigrum (L.) Moench. and V. rossicum (Kleopow) Barbar., which are invasive in North America. A population of the leaf beetle Chrysolina aurichalcea asclepiadis (Villa) originating from the western Alps has been under evaluation as a part of this program. The preliminary host range of C. a. asclepiadis was determined among 37 potential host plants. In addition, a prerelease impact study was conducted to determine the effect of larval feeding on the performance of V. nigrum. Under no-choice conditions beetle larvae completed development on nine plant species within the genera Artemisia and Tanacetum (Asteraceae) and Asclepias and Vincetoxicum (Apocynaceae). The host range of adults is broader than larvae (13 plant species within five genera received sustained feeding). Three of the six nontarget species supporting larval development are native to North America, however in separate oviposition tests, female beetles failed to produce eggs when confined to these hosts. In multiple-choice tests, neither larvae nor adults preferred Vincetoxicum spp. to nontarget species. Larval damage by C. a. asclepiadis at densities at and above five larvae per plant substantially reduced growth, biomass, and delayed reproduction of V. nigrum. However, this population of C. a. asclepiadis is polyphagous and unsuitable for biological control of Vincetoxicum because of potential risk of attack to Asclepias tuberosa L. and native North American Asteraceae, particularly Artemisia.  相似文献   

17.
For some phytophagous insects, egg maturation may be dependent on adult feeding. Accordingly, rates of egg maturation may be dependent on the quality and quantity of available food sources. In turn, oviposition behavior could be affected by diet quality via changes in egg load (number of mature eggs carried by a female). Experiments were conducted to determine whether adult feeding may affect oviposition behavior of the glassy-winged sharpshooter, Homalodisca vitripennis. No-choice tests demonstrated that eggs accumulated in glassy-winged sharpshooter abdomens as time since last oviposition increased largely as a function of feeding plant species. In choice tests, glassy-winged sharpshooter females were observed most frequently on the plant species that imparted the greatest egg maturation rate in no-choice tests. Direct tests of the effects of egg load on glassy-winged sharpshooter oviposition behavior found that females were more likely to deposit eggs as egg load increased. Similarly, acceptance of a low-ranked oviposition plant species by female glassy-winged sharpshooters increased with egg load and time since last oviposition. The results indicate that adult feeding affected glassy-winged sharpshooter egg maturation, plant species varied in quality for providing nutrients for egg maturation, and egg load affected oviposition behavior. Thus, the quantity and quality of available feeding plant species may affect glassy-winged sharpshooter egg maturation rates, which in turn may affect the plant species female glassy-winged sharpshooters select for oviposition.  相似文献   

18.
Habitat manipulation has long been used as strategy to enhance beneficial insects in agroecosystems. Non-crop weed strips have the potential of supplying food resources to natural enemies, even when pest densities are low. However, in tropical agroecosystems there is a paucity of information pertaining to the resources provided by non-crop weeds and their interactions with natural enemies. In this study we evaluated (a) whether weeds within chili pepper fields affect the diversity and abundance of aphidophagous species; (b) whether there are direct interactions between weeds and aphidophagous arthropods; and (c) the importance of weed floral resources for survival of a native and exotic coccinellid in chili pepper agroecosystems. In the field, aphidophagous arthropods were dominated by Coccinellidae, Syrphidae, Anthocoridae, Neuroptera and Araneae, and these natural enemies were readily observed preying on aphids, feeding on flowers or extrafloral nectaries, and using plant structures for oviposition and/or protection. Survival of native Cycloneda sanguinea (Coleoptera: Coccinellidae) differed between plant species, with significantly greater survival on Ageratum conyzoides and Bidens pilosa. However, no evidence was gathered to suggest that weed floral resources provided any nutritional benefit to the exotic Harmonia axyridis (Coleoptera: Coccinellidae). This research has provided evidence that naturally growing weeds in chili pepper agroecosystems can affect aphid natural enemy abundance and survival, highlighting the need for further research to fully characterize the structure and function of plant resources in these and other tropical agroecosystems.  相似文献   

19.
Alliaria petiolata is a European biennial herb that invades North American forests and has direct negative effects on associated flora and fauna. In some places, A. petiolata has invaded the habitat of Pieris virginiensis, a rare, univoltine butterfly that normally uses native spring ephemeral crucifer hosts. There are occasional observations of P. virginiensis laying eggs on A. petiolata, but the frequency and effects of these “mistake oviposition events” are not yet known. We investigated P. virginiensis oviposition preference through field observations in three locations (NY, OH, PA), and also through laboratory experiments measuring egg deposition of adult females on either a native or invasive crucifer. In addition, we examined neonate larval performance through no-choice feeding assays on both A. petiolata leaves and cabbage leaves painted with A. petiolata leaf extracts. We found that P. virginiensis lays significantly more eggs on the exotic A. petiolata than on its native host Cardamine diphylla in both field and laboratory experiments. Caterpillars fed either A. petiolata leaf tissue or its ethanol extract did not survive to pupation, and most died after only a few days. Continual invasion and persistence of A. petiolata in P. virginiensis habitats may lead to genetic bottlenecking and possibly local extinctions without human intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号