首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 101 to 7.08 × 103 per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15 % of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3–4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6–9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.  相似文献   

2.
Sediment and water samples collected from one acidic and three alkaline high temperature hot springs at the Tengchong terrestrial geothermal field, Southwest China, were examined using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contained relatively high concentrations of S, Fe and N chemical species. Specifically, the acidic water was rich in Fe2+, SO42? and NH4+, while the alkaline waters were high in NO3?, H2S and S2O3?. Analyses of 16S rRNA gene sequences showed their bacterial communities were dominated by phyla Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archaeal clone libraries were dominated by orders Desulfurococcales, Sulfolobales, and Thermoproteales. Potential S-, N- and Fe-metabolizing prokaryotes were present at a relatively high proportion, but with large differences in the diversity and metabolic functions of each sample. These findings provide implications for uncovering microbial functions in elemental biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities in geothermal sediments were related to different in situ physicochemical conditions; ii). the S-, N- and Fe-related prokaryotes would take advantage of the strong chemical disequilibria in the hot springs; and iii). in return, their metabolic activities could promote the transformation of the S, Fe and N chemical species, thereby forming the basis of biogeochemical cycles in the terrestrial geothermal environments.  相似文献   

3.
Two hydrothermal springs (AI: 51 °C, pH 3; AIV: 92 °C, pH 8) were analysed to determine prokaryotic community composition. Using pyrosequencing, 93,576 partial 16S rRNA gene sequences amplified with V2/V3-specific primers for Bacteria and Archaea were investigated and compared to 16S rRNA gene sequences from direct metagenome sequencing without prior amplification. The results were evaluated by fluorescence in situ hybridization (FISH). While in site AIV Bacteria and Archaea were detected in similar relative abundances (Bacteria 40 %, Archaea 35 %), the acidic spring AI was dominated by Bacteria (68 %). In spring AIV the combination of 16S rRNA gene sequence analysis and FISH revealed high abundance (>50 %) of heterotrophic bacterial genera like Caldicellulosiruptor, Dictyoglomus, and Fervidobacterium. In addition, chemolithoautotrophic Aquificales were detected in the bacterial community with Sulfurihydrogenibium being the dominant genus. Regarding Archaea, only Crenarchaeota, were detected, dominated by the family Desulfurococcaceae (>50 %). In addition, Thermoproteaceae made up almost 25 %. In the acidic spring (AI) prokaryotic diversity was lower than in the hot, slightly alkaline spring AIV. The bacterial community of site AI was dominated by organisms related to the chemolithoautotrophic genus Acidithiobacillus (43 %), to the heterotrophic Acidicaldus (38 %) and to Anoxybacillus (7.8 %). This study reveals differences in the relative abundance of heterotrophic versus autotrophic microorganisms as compared to other hydrothermal habitats. Furthermore, it shows how different methods to analyse prokaryotic communities in complex ecosystems can complement each other to obtain an in-depth picture of the taxonomic composition and diversity within these hydrothermal springs.  相似文献   

4.
Thousands of hot springs are located in the north‐eastern part of the Yunnan–Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2–8.6; temperature 47–96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene‐pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus‐Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non‐acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non‐acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.  相似文献   

5.
An integrated view of bacterial and archaeal diversity in saline soil habitats is essential for understanding the biological and ecological processes and exploiting potential of microbial resources from such environments. This study examined the collective bacterial and archaeal diversity in saline soils using a meta-analysis approach. All available 16S rDNA sequences recovered from saline soils were retrieved from publicly available databases and subjected to phylogenetic and statistical analyses. A total of 9,043 bacterial and 1,039 archaeal sequences, each longer than 250 bp, were examined. The bacterial sequences were assigned into 5,784 operational taxonomic units (OTUs, based on ≥97 % sequence identity), representing 24 known bacterial phyla, with Proteobacteria (44.9 %), Actinobacteria (12.3 %), Firmicutes (10.4 %), Acidobacteria (9.0 %), Bacteroidetes (6.8 %), and Chloroflexi (5.9 %) being predominant. Lysobacter (12.8 %) was the dominant bacterial genus in saline soils, followed by Sphingomonas (4.5 %), Halomonas (2.5 %), and Gemmatimonas (2.5 %). Archaeal sequences were assigned to 602 OTUs, primarily from the phyla Euryarchaeota (88.7 %) and Crenarchaeota (11.3 %). Halorubrum and Thermofilum were the dominant archaeal genera in saline soils. Rarefaction analysis indicated that less than 25 % of bacterial diversity, and approximately 50 % of archaeal diversity, in saline soil habitats has been sampled. This analysis of the global bacterial and archaeal diversity in saline soil habitats can guide future studies to further examine the microbial diversity of saline soils.  相似文献   

6.
The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.  相似文献   

7.
Bacterial and archaeal diversity in surface soils of three coal-fire vents was investigated by T-RFLP analysis and clone libraries of 16S rRNA genes. Soil analysis showed that underground coal fires significantly influenced soil pH, moisture and NO3 ? content but had little effect on other elements, organic matter and available nutrients. Hierarchical cluster analysis showed that bacterial community patterns in the soils were very similar, but abundance varied with geographic distance. A clone library from one soil showed that the bacterial community was mainly composed of Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria, and unidentified groups. Of these, Firmicutes was the most abundant, accounting for 71.4 % of the clones, and was mainly represented by the genera Bacillus and Paenibacillus. Archaeal phylotypes were closely related to uncultivated species of the phyla Crenarchaeota (97.9 % of clones) and Thaumarchaeota (2.1 %). About 28 % of archaeal phylotypes were associated with ammonia oxidization, especially phylotypes that were highly related to a novel, ammonia-oxidizing isolate from the phylum Thaumarchaeota. These results suggested that microbial communities in the soils were diverse and might contain a large number of novel cultivable species with the potential to assimilate materials by heterotrophic metabolism at high temperature.  相似文献   

8.
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.  相似文献   

9.
Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.  相似文献   

10.
It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66–96 °C) and pH (4.3–9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.  相似文献   

11.
The aim of this study was to investigate the microbial community thriving at two shallow hydrothermal vents off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the vents on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two vents, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphur-oxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 105 cells ml−1, expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77–3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR–DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture-dependent and -independent methods. The primary production at the shallow hydrothermal system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs.  相似文献   

12.
A novel Gram-negative, orange-pigmented bacterial strain JLT2008T was isolated from the surface seawater of the Western Pacific and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JLT2008T belonged to the genus Erythrobacter, sharing the highest similarity (96.6 %) with Erythrobacter gangjinensis K7-2T and the lowest similarity (94.9 %) with Erythrobacter litoralis DSM 8509T. Strain JLT2008T did not contain bacteriochlorophyll a, and the predominant respiratory lipoquinone was ubiquinone-10. The major fatty acids were C18:1 ω7c, C16:0, C16:1 ω7c/C16:1 ω6c. The prominent polar lipids were sphingoglycolipid, phosphatidylethanolamine, and phosphatidylglycerol. The genomic G + C content was 60.1 mol %. Based on the polyphasic taxonomic data, a novel species within the genus Erythrobacter, and with the name Erythrobacter westpacificensis sp. nov., is proposed. The type strain is JLT2008T (=CGMCC 1.10993T = JCM 18014T).  相似文献   

13.
The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m3 digester produced biogas with 57 % methane, and chemical oxygen demand removal of 54 %. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93 % of the clones and 76 % of the pyrotags. Of the Firmicutes, class Clostridia (52 % pyrotags) was most abundant followed by class Bacilli (13 % pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97 % minimum similarity level. Fifteen OTUs were dominant (≥2 % abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (<0.5 % abundance), 75 % were Firmicutes. The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99 % of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.  相似文献   

14.
Nitrification plays a significant role in the global nitrogen cycle, and this concept has been challenged with the discovery of ammonia-oxidizing archaea (AOA) in the environment. In this paper, the vertical variations of the diversity and abundance of AOA in the hyporheic zone of the Fuyang River in North China were investigated by molecular techniques, including clone libraries, phylogenetic analysis and real-time polymerase chain reaction. The archaeal amoA gene was detected in all sediments along the profile, and all AOA fell within marine group 1.1a and soil group1.1b of the Thaumarchaeota phylum, with the latter being the dominant type. The diversity of AOA decreased with the sediment depth, and there was a shift in AOA community between top-sediments (0–5 cm) and sub-sediments (5–70 cm). The abundance of the archaeal amoA gene (1.48 × 107 to 5.50 × 107 copies g?1 dry sediment) was higher than that of the bacterial amoA gene (4.01 × 104 to 1.75 × 10copies g?1 dry sediment) in sub-sediments, resulting in a log10 ratio of AOA to ammonia-oxidizing bacteria (AOB) from 2.27 to 2.69, whereas AOB outnumbered AOA in top-sediments with a low log10 ratio of (?0.24). The variations in the AOA community were primarily attributed to the combined effect of the nutrients (ammonium-N, nitrate-N and total organic carbon) and oxygen in sediments. Ammonium-N was the major factor influencing the relative abundance of AOA and AOB, although other factors, such as total organic carbon, were involved. This study helps elucidate the roles of AOA and AOB in the nitrogen cycling of hyporheic zone.  相似文献   

15.
The effects of salt stress on endophytic prokaryotic communities in plants are largely unknown, and the distribution patterns of bacterial and archaeal endophytes in different tissues of a plant species are rarely compared. We investigated the endophytic bacterial and archaeal communities in roots, stems and leaves of the common reed, Phragmites australis, collected from three tidal zones along a salinity gradient, using terminal restriction fragment (T-RF) length polymorphism analysis of the 16S rRNA genes. The results showed that the bacterial diversity in the roots was significantly higher than that in the leaves, whereas similar archaeal diversity was revealed for either plant tissues or tidal zones. Network analysis revealed that T-RFs were grouped largely by tissue, and the major groups were generally linked by a few common T-RFs. Unique T-RFs in roots were mainly present in plants growing in the supratidal zone, but unique T-RFs in stems and leaves were mainly present in those from the middle and high tidal zones. Non-metric multidimensional scaling ordination and analysis of similarity revealed that bacterial communities were significantly different among tissues (P < 0.05), but similar among tidal zones (P = 0.49). However, the archaeal communities differed among tidal zones (P < 0.05), but were similar among tissues (P = 0.89). This study indicates that: (1) the endophytic archaeal communities are influenced more significantly than the endophytic bacterial communities by soil salinity, and (2) the differential distribution patterns of bacterial and archaeal endophytes in plant tissues along a salinity gradient imply that these two groups play different roles in coastal hydrophytes.  相似文献   

16.
Performance of biological wastewater treatment systems may be related to the composition and activity of microbial populations they contain. However, little information is known regarding microbial community inhabiting these ecosystems. The purpose of this study was to investigate archaeal and bacterial diversity, using cultivation-independent molecular techniques, in a constructed wetland receiving domestic wastewater. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by PCR using primers specific for archaeal and bacterial domains. A high microbial diversity was detected. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 31.3 % of the OTUs, followed by the Bacteroidetes (14.8 %), Planctomycetales (13.8 %), Actinobacteria (12 %), and Chloroflexi (8.2 %). Sequences affiliated with minor phylogenetic divisions such as the TM7, Nitrospira, OP10, and BRC1 are represented by <6 % of total OTUs. The Archaea domain was represented by the Thaumarchaeota phylum dominated by the Candidatus Nitrososphaera genus.  相似文献   

17.
Although San José Island is considered one of the most important islands in the lower Gulf of California due to its commercial fishing activities, few studies have evaluated their fish taxonomic diversity. The aim of this study was to determine the variation in the taxonomic diversity of the conspicuous fish community in eight locations around San José Island from March 2001 to February 2002. We assessed the changes in the diversity of rocky reef fish based on the taxonomic distances between species, using Fisher’s alpha diversity index, average taxonomic distinctiveness (AvTD Δ+), and taxonomic distinctiveness (Δ*). Visual censuses were conducted in 48 transects consisting of 100?×?5?m quadrants (500?m2 sampling area) at an average depth of 5?m, from 09:00 to 16:00. A total of 26,608 fishes belonging to 112 species and 76 genera were found. The index of relative abundance was used to determine the most important species, which were in order of abundance: Abudefduf troschelii, Thalassoma lucasanum, Stegastes rectifraenum, Mulloidichthys dentatus, Chromis atrilobata, Lutjanus argentiventris, and Scarus ghobban. According to Fisher’s alpha diversity index, the highest diversity of species was found in July and the lowest in February. The indices of Δ+ and Δ* indicated significant temporal and spatial differences.  相似文献   

18.
Aerobic methane oxidation has been mostly studied in environments with moderate to low temperatures. However, the process also occurs in terrestrial thermal springs, where little research on the subject has been done to date. The potential activity of methane oxidation and diversity of aerobic methanotrophic bacteria were studied in sediments of thermal springs with various chemical and physical properties, sampled across the Kunashir Island, the Kuriles archipelago. Activity was measured by means of the radioisotope tracer technique utilizing 14C-labeled methane. Biodiversity assessments were based on the particulate methane monooxygenase (pmoA) gene, which is found in all known thermophilic and thermotolerant methanotrophs. We demonstrated the possibility of methane oxidation in springs with temperature exceeding 74 °C, and the most intensive methane uptake was shown in springs with temperatures about 46 °C. PmoA was detected in 19 out of 30 springs investigated and the number of pmoA gene copies varied between 104 and 106 copies per ml of sediment. Phylogenetic analysis of PmoA sequences revealed the presence of methanotrophs from both the Alpha- and Gammaproteobacteria. Our results suggest that methanotrophs inhabiting thermal springs with temperature exceeding 50 °C may represent novel thermophilic and thermotolerant species of the genera Methylocystis and Methylothermus, as well as previously undescribed Gammaproteobacteria.  相似文献   

19.
Alpha and beta diversities of the bacterial communities growing on rock surfaces, proto-soils, riparian sediments, lichen thalli, and water springs biofilms in a glacier foreland were studied. We used three molecular based techniques to allow a deeper investigation at different taxonomic resolutions: denaturing gradient gel electrophoresis, length heterogeneity-PCR, and automated ribosomal intergenic spacer analysis. Bacterial communities were mainly composed of Acidobacteria, Proteobacteria, and Cyanobacteria with distinct variations among sites. Proteobacteria were more represented in sediments, biofilms, and lichens; Acidobacteria were mostly found in proto-soils; and Cyanobacteria on rocks. Firmicutes and Bacteroidetes were mainly found in biofilms. UniFrac P values confirmed a significant difference among different matrices. Significant differences (P < 0.001) in beta diversity were observed among the different matrices at the genus–species level, except for lichens and rocks which shared a more similar community structure, while at deep taxonomic resolution two distinct bacterial communities between lichens and rocks were found.  相似文献   

20.
To characterize the archaeal community composition in soil originating iron-manganese nodules, four types of soils—brown soil, yellow-cinnamon soil, yellow brown soil and red soil—and their associated iron-manganese nodules were collected from Queyu (QY), Zaoyang (ZY), Wuhan (WH) and Guiyang (GY), China, respectively, and subjected to quantitative polymerase chain reaction, cloning and sequencing analyses. The results showed that the archaeal 16S rRNA gene copy numbers in nodules, ranging between 3.59 × 102 and 4.17 × 103 copies g?1 dry nodule, were about 50–1000 times lower than those in their corresponding soils (1.87 × 105 to 1.08 × 106 copies g?1 dry soil), correlating with the low organic matter in the nodules, while archaea accounted for a relatively higher proportion of total prokaryote in nodules than in soils. Community composition analysis suggested that the archaeal diversity in both soils and nodules were much lower than bacterial, but archaeal community structures were similar to each other among the soils and nodules from the same location but varied among four locations, converse to the previous observation that bacterial community shifted markedly between nodules and soils as the result of habitat filtering. The archaeal communities in both soils and nodules were predominated by Thaumarchaeota Group I.1b with the relative abundance ranging between 73.88 and 94.17%, except that Euryarchaeota dominated the archaeal community in one nodule sample (WHn) developed from lake sediment. The finding shed new light on the archaeal diversity and their ecophysiology in different habitats, and further supported the opinion that archaea are more adaptable to stress and unfavorable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号