首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species invasions into ancient lakes are an important but little understood phenomenon. At ancient Lake Ohrid, a systematic assessment of invasive mollusc species using morphological and genetic data was conducted from 2003 to 2012. Two globally invasive gastropod species, Physa acuta and Ferrissia fragilis, have recently been discovered at 4 out of 386 sites. These sites are anthropogenically impacted. The invasive species co-occur with endemics. Phylogenetic analyses of populations from native and invaded ranges of both species confirmed their identities and provided insights into their invasion histories. Accordingly, P. acuta is genetically more diverse than F. fragilis. Both species are currently present in a considerable number of lakes on the Balkan Peninsula. Possible future trends in Lake Ohrid and the Balkans are discussed and further spread of both species is likely. Given the ongoing environmental change in Lake Ohrid, the number of observations of non-indigenous or other widespread species will probably rise in the coming years and such species and their impact on native species should be carefully monitored. Moreover, ancient lakes with recurrent invasions of alien species might serve as interesting model systems for the study of important topics of invasion biology.  相似文献   

2.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

3.
Theoretical and empirical comparisons of molecular diversity in selfing and outcrossing plants have primarily focused on long‐term consequences of differences in mating system (between species). However, improving our understanding of the causes of mating system evolution requires ecological and genetic studies of the early stages of mating system transition. Here, we examine nuclear and chloroplast DNA sequences and microsatellite variation in a large sample of populations of Arabidopsis lyrata from the Great Lakes region of Eastern North American that show intra‐ and interpopulation variation in the degree of self‐incompatibility and realized outcrossing rates. Populations show strong geographic clustering irrespective of mating system, suggesting that selfing either evolved multiple times or has spread to multiple genetic backgrounds. Diversity is reduced in selfing populations, but not to the extent of the severe loss of variation expected if selfing evolved due to selection for reproductive assurance in connection with strong founder events. The spread of self‐compatibility in this region may have been favored as colonization bottlenecks following glaciation or migration from Europe reduced standing levels of inbreeding depression. However, our results do not suggest a single transition to selfing in this system, as has been suggested for some other species in the Brassicaceae.  相似文献   

4.
The success of an exotic species depends notably on its capacity to initiate a new population from a few individuals, to survive genetic bottlenecks and to adapt locally. Species with multiple reproductive strategies (e.g. mixed-mating system with both self- and cross-fertilization) can be efficient colonizers. Herein we focus on Corella eumyota , an exotic ascidian that has rapidly invaded English Channel coasts in recent years. Interestingly, this brooding hermaphroditic ascidian is capable of self-fertilization in the laboratory. We developed 12 microsatellite markers from an enriched library of genomic DNA to investigate the level of inbreeding and selfing in two putatively native populations (South Africa, N  = 34, and New Zealand, N  = 28) and to examine if founder effects were possibly associated with its recent introduction in two French populations (Perros-Guirec, N  = 22 and Brest; N  = 25). Genetic polymorphism was very low in both native populations (i.e. less than 60% of the loci were polymorphic) and even lower in the introduced populations, one of which was monomorphic at all loci, suggesting a recent bottleneck. F is and a new method based on multi-locus heterozygosity were used to provide estimates of inbreeding. A high selfing rate was inferred in the South Africa population with both methods ( s  = 0.90), whereas in the other native population (New Zealand) a lower but significant estimate of selfing rate ( s  = 0.29) was obtained with the multi-locus method. This variability of population selfing rate might be explained by a mixed-mating system, allowing C. eumyota to reproduce through inbreeding and outbreeding according to mating possibilities; this trait may have favoured the rapid establishment of new populations in Europe.  相似文献   

5.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

6.
Biological invasions are typically associated with disturbance, which often makes their impact on biodiversity unclear—biodiversity decline might be driven by disturbance, with the invader just being a ‘passenger’. Alternatively, an invader may act as a ‘back-seat driver’, being facilitated by disturbance that has already caused some biodiversity decline, but then causing further decline. Here we examine the interactive effects of anthropogenic fire and invasive ant species (Anoplolepis gracilipes or Wasmannia auropunctata) on native ant diversity in New Caledonia, a globally recognized biodiversity hotspot. We first examined native ant diversity at nine paired burnt and unburnt sites, with four pairs invaded by Anoplolepis, 5 years after an extensive fire. In the absence of invasion, native epigaeic ants were resilient to fire, but native ant richness and the abundance of Forest Opportunists were markedly lower in invaded burnt sites. Second, we examined native ant diversity along successional gradients from human-derived savanna to natural rainforest in the long-term absence of fire, where there was a disconnection between disturbance-mediated variation in microhabitat and the abundance of the disturbance specialist Wasmannia. All native ant diversity responses (total abundance, richness, species composition, functional group richness and the abundance of Forest Opportunists) declined independently of microhabitat variables but in direct association with high Wasmannia abundance. Our results indicate that invasive ants are acting as back-seat drivers of biodiversity decline in New Caledonia, with invasion facilitated by disturbance but then causing further biodiversity decline.  相似文献   

7.
Exotic species can cause changes to their invaded ecosystems, which can be large and long lasting. Despite most landscapes being invaded by multiple exotic plant species, >90 % of impact studies only characterize the impacts of single species. Therefore, our knowledge of invasive plant impacts does not reflect the co-invaded nature of most landscapes, potentially ignoring complex interactions among exotic species. Our objective was to characterize potential invader synergies (positive interactions) on biotic and abiotic ecological parameters among the important forest invaders Japanese stiltgrass (Microstegium vimineum) and wavyleaf basketgrass (Oplismenus undulatifolius), which co-invade eastern US deciduous forests. To characterize synergies, we used a factorial selective removal study, as well as an observational study to further explore invader cover-impact relationships. Although both invaders can reduce native plant richness by 70 % individually or in combination, there were no impact synergies. Total cover of any combination of the two invaders had a negative quadratic effect on total, exotic, and native plant richness; i.e., all community metrics were greatest at intermediate levels of total invader cover and lowest at maximum invader cover. Native richness was more greatly affected than exotic richness by the co-invasion. Soil metrics had no clear trend in either study. Japanese stiltgrass and wavyleaf basketgrass appear to have overlapping impact niches—the number, magnitude, and direction of biotic and abiotic changes to the invaded ecosystem—that only vary in impact magnitude, not breadth. As a result of their overlapping impact niches and non-synergies in this co-invaded system, the addition of the recent invader wavyleaf basketgrass has not resulted in additional changes to the invaded forests. Future impact studies should focus on multiple species and identifying synergies, especially as they relate to invader cover, which informs ecological interactions and management prioritization.  相似文献   

8.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

9.

Background and Aims

Plants vary widely in the extent to which seeds are produced via self-fertilization vs. outcrossing, and evolutionary change in the mating system is thought to be accompanied by genetic differentiation in a syndrome of floral traits. We quantified the pattern of variation and covariation in floral traits and the proportion of seeds outcrossed (t) to better understand the evolutionary processes involved in mating system differentiation among and within populations of the short-lived Pacific coastal dune endemic Camissoniopsis cheiranthifolia across its geographic range in western North America.

Methods

We quantified corolla width and herkogamy, two traits expected to influence the mating system, for 48 populations sampled in the field and for a sub-sample of 29 populations grown from seed in a glasshouse. We also measured several other floral traits for 9–19 populations, estimated t for 16 populations using seven allozyme polymorphisms, and measured the strength of self-incompatibility for nine populations.

Key Results

Floral morphology and self-incompatibility varied widely but non-randomly, such that populations could be assigned to three phenotypically and geographically divergent groups. Populations spanned the full range of outcrossing (t = 0·001–0·992), which covaried with corolla width, herkogamy and floral life span. Outcrossing also correlated with floral morphology within two populations that exhibited exceptional floral variation.

Conclusions

Populations of C. cheiranthifolia seem to have differentiated into three modal mating systems: (1) predominant outcrossing associated with self-incompatibility and large flowers; (2) moderate selfing associated with large but self-compatible flowers; and (3) higher but not complete selfing associated with small, autogamous, self-compatible flowers. The transition to complete selfing has not occurred even though the species appears to possess the required genetic capacity. We hypothesize that outcrossing populations in this species have evolved to different stable states of mixed mating.  相似文献   

10.
The evolutionary transition from outcrossing to selfing can have important genomic consequences. Decreased effective population size and the reduced efficacy of selection are predicted to play an important role in the molecular evolution of the genomes of selfing species. We investigated evidence for molecular signatures of the genomic selfing syndrome using 66 species of Primula including distylous (outcrossing) and derived homostylous (selfing) taxa. We complemented our comparative analysis with a microevolutionary study of P. chungensis, which is polymorphic for mating system and consists of both distylous and homostylous populations. We generated chloroplast and nuclear genomic data sets for distylous, homostylous, and distylous–homostylous species and identified patterns of nonsynonymous to synonymous divergence (dN/dS) and polymorphism (πN/πS) in species or lineages with contrasting mating systems. Our analysis of coding sequence divergence and polymorphism detected strongly reduced genetic diversity and heterozygosity, decreased efficacy of purifying selection, purging of large-effect deleterious mutations, and lower rates of adaptive evolution in samples from homostylous compared with distylous populations, consistent with theoretical expectations of the genomic selfing syndrome. Our results demonstrate that self-fertilization is a major driver of molecular evolutionary processes with genomic signatures of selfing evident in both old and relatively young homostylous populations.  相似文献   

11.
Reproductive traits that function in pollinator attraction may be reduced or lost during evolutionary transitions from outcrossing to selfing. Although floral scent plays an important role in attracting pollinators in outcrossing species, few studies have investigated associations between floral scent variation and intraspecific mating system transitions. The breakdown of distyly to homostyly represents a classic example of a shift from outcrossing to selfing and provides an opportunity to test whether floral fragrances have become reduced and/or changed in composition with increased selfing. Here, we evaluate this hypothesis by quantifying floral volatiles using gas chromatography-mass spectrometry in two distylous and four homostylous populations of Primula oreodoxa Franchet, a perennial herb from SW China. Our analysis revealed significant variation of volatile organic compounds (VOCs) among populations of P. oreodoxa. Although there was no difference in VOCs between floral morphs in distylous populations as predicted, we detected a substantial reduction in VOC emissions and the average number of scent compounds in homostylous compared with distylous populations. A total of 12 compounds, mainly monoterpenoids and sesquiterpenoids, distinguished homostylous and distylous morphs; of these, (E)-β-ocimene was the most important in contributing to the difference in volatiles, with significantly lower emissions in homostyles. Our findings support the hypothesis that the transition from outcrossing to selfing is accompanied by the loss of floral volatiles. The modification to floral fragrances in P. oreodoxa associated with mating system change might occur because high selfing rates in homostylous populations result in relaxed selection for floral attractiveness.  相似文献   

12.
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.  相似文献   

13.
Flower morphology plays an important role in the evolution and maintenance of plant mating systems, including disassortative mating of heterostylous species. The transition of mating patterns may be associated with the remodification of intraspecific flower morphology. To determine the functional relationship between floral variation and transition of mating patterns, we conducted a series of morphometric analyses in a distylous species Luculia pinceana, which possesses dimorphic and monomorphic populations. Our results indicate that floral variation was higher between different types of populations than between populations of the same type. Compared to dimorphic populations, some floral characters, reduced stigma anther separation within flowers and increased overlap of stigmas and anthers (illegitimate spatial matching of sexual organs) among individuals in populations containing only the long styled morph may have been modified to increase both selfing and intra morph crossing. The observed patterns of floral variation between dimorphic and monomorphic populations coincide with the transition of mating patterns from disassortative mating to selfing and/or intra morph crossing.  相似文献   

14.

Background and Aims

Floral variation, pollination biology and mating patterns were investigated in sunbird-pollinated Babiana (Iridaceae) species endemic to the Western Cape of South Africa. The group includes several taxa with specialized bird perches and it has been proposed that these function to promote cross-pollination.

Methods

Pollinator observations were conducted in 12 populations of five taxa (B. ringens subspp. ringens, australis, B. hirsuta, B. avicularis, B. carminea) and geographic variation in morphological traits investigated in the widespread B. ringens. Experimental pollinations were used to determine the compatibility status, facility for autonomous self-pollination and intensity of pollen limitation in six populations of four taxa. Allozyme markers were employed to investigate mating patterns in four populations of three species.

Key Results

Sunbirds were the primary pollinators of the five Babiana taxa investigated. Correlated geographical variation in perch size, flower size and stigma–anther separation was evident among B. ringens populations. Experimental pollinations demonstrated that B. ringens and B. avicularis were self-compatible with variation in levels of autonomous self-pollination and weak or no pollen limitation of seed set. In contrast, B. hirsuta was self-incompatible and chronically pollen limited. Estimates of outcrossing rate indicated mixed mating with substantial self-fertilization in all species investigated.

Conclusions

Despite the possession of specialized bird perches in B. ringens and B. avicularis, these structures do not prevent considerable selfing from occurring, probably as a result of autonomous self-pollination. In eastern populations of B. ringens, smaller flowers and reduced herkogamy appear to be associated with a shift to predominant selfing. Relaxed selection on perch function due to increased selfing may explain the increased incidence of apical flowers in some populations.  相似文献   

15.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

16.
The tertiary relict plant Sinocalycanthus chinensis, endemic to Zhejiang province with small populations and fragmented distribution, is an endangered plant in China. A relatively high species-level genetic diversity and low population-level genetic diversity exist in this species, and large genetic differentiation exists between two main populations with significant geographical isolation. Based on a previous artificial simulation mating test, amplified fragment length polymorphism (AFLP) marker was used in the present study to assess genetic diversity of filial generation colonies generated by different mating modes and to clarify genetic effects of various mating modes. The filial generation colonies generated by natural pollination and by geitonogamy were found to be similar to each other in terms of their relatively low genetic parameters and minimum genetic differentiation. This indicated that under natural conditions, selfing might occur at a higher proportion leading to the low genetic diversity within the population. The degree of genetic diversity of the filial generation colonies generated by outbreeding was highest, followed by inbreeding (xenogamy) and selfing (geitonogamy). Moreover, genetic differentiation between filial generation colonies generated by selfing (geitonogamy) and inbreeding (i.e., xenogamy) was much smaller than that between filial generation colonies generated by selfing and outbreeding. The results indicated that the genetic effect of outbreeding was much more dominant than other mating modes. Therefore, artificially promoting outbreeding between the two isolated geographically populations contributed to the enhancement of genetic diversity in populations in S. chinensis.  相似文献   

17.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

18.
A pervasive problem in invasion ecology is the limited recovery of native communities following removal of invaders. Little evidence exists on the causes of variation in post-invasion recovery. In a 4-year experiment using 65 sets of matched plots, we imposed an invader removal treatment (with control) on heterogeneous grassland plots invaded or uninvaded by an aggressive recent arrival, Aegilops triuncialis (barb goatgrass). We tested the validity of plot matching using transplants and soil analyses. We analyzed the community-level correlates of invader impacts, removal treatment side effects, and community recovery, each defined in two ways: by compositional similarity to uninvaded plots, and by relative native species richness. Recovery of native species richness in invaded and treated plots was high (approaching 100 %) although recovery of composition was not high (median 71 % Bray–Curtis dissimilarity to uninvaded untreated plots). We measured resilience as the residuals of community recovery in models that controlled for invader impacts and removal treatment side effects. Compositional resilience was highest where the uninvaded communities had the least cover by other invaders in the same functional group as the focal invader. Richness resilience was highest where the uninvaded communities had the lowest native species richness. Our study suggests that the recovery of native species per se may be a more relevant goal than the recovery of the exact pre-invasion species composition of particular sites, particularly in cases where pre-invasion species composition included exotic species other than the focal invader.  相似文献   

19.
Delayed selfing has been considered the best-of-both-worlds response to pollinator unpredictability because it can provide reproductive assurance without decreasing outcrossing potential. According to this hypothesis, selfing rates in delayed selfing species should be highly variable in fluctuating pollinator environments. To test this prediction, as well to explore the consequences of delayed selfing on genetic patterns, we compared two sister species that grow in the high Andes of Chile: Schizanthus grahamii that exhibits delayed selfing and Schizanthus hookeri, which is self-compatible but requires pollinators for seed set. We estimated genetic diversity within and among five populations of each species using six shared microsatellites. Our results indicated that selfing rates in S. grahamii (range 0.07–0.81) were significantly more variable than in S. hookeri (range 0–0.26). The highest levels of selfing were found in the populations of S. grahamii located at highest altitudes (r = 0.78) and at northern margin range, where pollinators are probably more scarce. These populations also showed the lowest allelic richness and heterozygosity values. Southern populations of S. grahamii had mixed mating, and showed heterozygosity and diversity values close to those detected for S. hookeri along all the sampled range. Selfing in this species results from geitonogamy, and did not covary with altitude. Schizanthus grahamii showed greater population differentiation than S. hookeri. Overall, our results indicated that selfing rates were widely variable in S. grahamii, with some populations predominantly selfing and others showing mixed mating. This pattern may be associated with the strong fluctuations in pollinator service that typically occur in the high Andes of Chile.  相似文献   

20.
Forecasting the ecological impacts of invasive species is a major challenge that has seen little progress, yet the development of robust predictive approaches is essential as new invasion threats continue to emerge. A common feature of ecologically damaging invaders is their ability to rapidly exploit and deplete resources. We thus hypothesized that the ‘functional response’ (the relationship between resource density and consumption rate) of such invasive species might be of consistently greater magnitude than those of taxonomically and/or trophically similar native species. Here, we derived functional responses of the predatory Ponto-Caspian freshwater ‘bloody red’ shrimp, Hemimysis anomala, a recent and ecologically damaging invader in Europe and N. America, in comparison to the local native analogues Mysis salemaai and Mysis diluviana in Ireland and Canada, respectively. This was conducted in a novel set of experiments involving multiple prey species in each geographic location and a prey species that occurs in both regions. The predatory functional responses of the invader were generally higher than those of the comparator native species and this difference was consistent across invaded regions. Moreover, those prey species characterized by the strongest and potentially de-stabilizing Type II functional responses in our laboratory experiments were the same prey species found to be most impacted by H. anomala in the field. The impact potential of H. anomala was further indicated when it exhibited similar or higher attack rates, consistently lower prey handling times and higher maximum feeding rates compared to those of the two Mysis species, formerly known as ‘Mysis relicta’, which itself has an extensive history of foodweb disruption in lakes to which it has been introduced. Comparative functional responses thus merit further exploration as a methodology for predicting severe community-level impacts of current and future invasive species and could be entered into risk assessment protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号