首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Glutamylcysteine synthetase (gamma-GCS) is a key enzyme in glutathione (GSH) synthesis, and is thought to play a significant role in intracellular detoxification, especially of anticancer drugs. Increased levels of GSH are commonly found in the drug-resistant human cancer cells. We designed a hammerhead ribozyme against gamma-GCS mRNA (anti-gamma-GCS Rz), which specifically down-regulated gamma-GCS gene expression in the HCT-8 human colon cancer cell line. The aim of this study was to reverse the cisplatin and multidrug resistance for anticancer drugs. The cisplatin-resistant HCT-8 cells (HCT-8DDP cells) overexpressed MRP and MDR1 genes, and showed resistance to not only cisplatin (CDDP), but also doxorubicin (DOX) and etoposide (VP-16). We transfected a vector expressing anti-gamma-GCS Rz into the HCT-8DDP cells (HCT-8DDP/Rz). The anti-gamma-GCS Rz significantly suppressed MRP and MDR, and altered anticancer drug resistance. The HCT-8DDP/Rz cells were more sensitive to CDDP, DOX and VP-16 by 1.8-, 4.9-, and 1.5-fold, respectively, compared to HCT-8DDP cells. The anti-gamma-GCS Rz significantly down-regulated gamma-GCS gene expression as well as MRP/MDR1 expression, and reversed resistance to CDDP, DOX and VP-16. These results suggested that gamma-GCS plays an important role in both cisplatin and multidrug resistance in human cancer cells.  相似文献   

2.
Prolonged chemotherapy may lead to the selective proliferation of multidrug resistant (MDR) cancer cells. In MDR HepG2-DR and K562-DR cells that over-expressed P-glycoprotein (Pgp), the extract of the rhizomes of Alisma orientalis (Sam) Juzep. showed a synergistic growth inhibitory effect with cancer drugs that are Pgp substrates including actinomycin D, puromycin, paclitaxel, vinblastine and doxorubicin. At the same toxicity levels the herbal extract was more effective than verapamil, a standard Pgp inhibitor, in enhancing cellular doxorubicin accumulation and preventing the efflux of rhodamin-123 from the MDR cells. The extract restored the effect of vinblastine on the induction of G(2)/M arrest in MDR cells. Our data suggest that A. orientalis may contain components that are effective inhibitors of Pgp.  相似文献   

3.
We have synthesised and evaluated a series of anthranilamide based modulators of P-glycoprotein. These studies have identified XR9576(2), a potent inhibitor of P-glycoprotein in vitro and in vivo. The general synthesis and the SAR of these compounds are described.  相似文献   

4.
Ji BS  He L  Liu GQ 《Life sciences》2005,77(18):2221-2232
P-glycoprotein-mediated drug efflux can yield a multidrug resistance (MDR) phenotype that is associated with a poor response to cancer chemotherapy. Development of safe and effective MDR reversing agents is an important approach in the clinic. The aim of this study was to observe the effects of CJX1, an amlodipine derivative, on the inhibition of P-gp function and P-gp-mediated MDR in K562/DOX cells and parental K562 cells. Based on the flow cytometric technology, the uptake, accumulation and efflux of rhodamine123 (Rh123) were detected in these cells by measuring Rh123-associated mean fluorescence intensity (MFI). The effects of CJX1 on the doxorubicin cytotoxicity were evaluated by assaying for MTT (3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide) reduction and the reversal fold (RF) values. The DNA content, percentage of apoptosis and cell cycle analysis were monitored with flow cytometry. Intracellular accumulation of doxorubicin was also assessed by the determination of doxorubicin-associated MFI. Verapamil was employed as a comparative agent. Incubation of K562/DOX cells with CJX1 caused a marked increase in uptake and a notable decrease in efflux of Rh123, No such results were found in parental K562 cells. The inhibitory effect of the agent of P-gp function was reversible, but it persisted at least for 90 min after removal of 2.5 microM CJX1 from incubation medium. The doxorubicin-induced cytotoxicity, apoptosis and cell cycle perturbations were significantly potentiated by CJX1. The intracellular accumulation of doxorubicin was enhanced in the presence of various concentrations of CJX1. The CJX1 exhibited potent effects in vitro in the reversal of P-gp-mediated MDR, suggesting that the compound may become a candidate of effective MDR reversing agent in cancer chemotherapy.  相似文献   

5.
Vif, one of the six accessory genes expressed by HIV-1, is essential for the productive infection of natural target cells. Previously we suggested that Vif acts as a regulator of the viral protease (PR): It prevents the autoprocessing of Gag and Gag-Pol precursors until virus assembly, and it may control the PR activity in the preintegration complex at the early stage of infection. It was demonstrated before that Vif, and specifically the 98 amino acid stretch residing at the N'-terminal part of Vif (N'-Vif), inhibits both the autoprocessing of truncated Gag-Pol polyproteins in bacterial cells and the hydrolysis of synthetic peptides by PR in cell-free systems. Linear synthetic peptides derived from N'-Vif specifically inhibit and bind HIV-1 PR in vitro, and arrest virus production in tissue culture. Peptide mapping of N'-Vif revealed that Vif88-98 is the most potent PR inhibitor. Here we report that this peptide inhibits both HIV-1 and HIV-2, but not ASLV proteases in vitro. Vif88-98 retains its inhibitory effect against drug-resistant HIV-1 PR variants, isolated from patients undergoing long-term treatment with anti-PR drugs. Variants of HIV protease bearing the mutation G48V are resistant to inhibition by this Vif-derived peptide, as shown by in vitro assays. In agreement with the in vitro experiments, Vif88-98 has no effect on the production of infectious particles in cells infected with a G48V mutated virus.  相似文献   

6.
Multidrug resistance (MDR) is a major obstacle to successful clinical cancer chemotherapy. Currently, there is still unsatisfactory demand for innovative strategies as well as effective and safe reversing agent to overcome MDR. In this study, we developed a novel nanoformulation, in which doxorubicin hydrochloride (DOX) and quinine hydrochloride (QN) were simultaneously loaded into liposomes by a pH-gradient method for overcoming MDR and enhancing cytotoxicity in a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR). The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and QN co-loaded liposomes (DQLs). The DQL showed uniform size distribution and high encapsulation efficiency (over 90%) for both the drugs. Furthermore, DQLs significantly displayed high intracellular accumulation and potential of MDR reversal capability in MCF-7/ADR cells through the cooperation of DOX with QN, in which QN played the role as a MDR reversing agent. The IC50 of DQL0.5:1 with the DOX/QN/SPC weight ratio of 0.5:1:50 was 1.80?±?0.03?μg/mL, which was 14.23 times lower than that of free DOX in MCF-7/ADR cells. And the apoptotic percentage induced by DQL0.5:1 was also increased to 62.2%. These findings suggest that DQLs have great potential for effective treatment of MDR cancer.  相似文献   

7.
Breast cancer resistance protein (BCRP) is an ATP-binding cassette multidrug transporter that confers resistance to various anticancer drugs like Mitoxantrone. Overexpression of BCRP confers multidrug resistance (MDR) in cancer cells and is a frequent impediment to successful chemotherapy. For stable reversal of BCRP-depending MDR by RNA interference technology, a hU6-RNA gene promoter-driven expression vector encoding anti-BCRP short hairpin RNA (shRNA) molecules was constructed. By treating endogenously and exogenously expresses high levels of BCRP cells with these constructs, expression of the targeted BCRP-encoding mRNA, and transport protein was inhibited completely. Furthermore, the accumulation of mitoxantrone in the anti-BCRP shRNA-treated cells increased. And the sensitivity to mitoxantrone of anti-BCRP shRNA-treated cells is increased 14.6-fold and 2.44-fold respectively compared to their control (P < 0.05). These data indicated that stable shRNA-mediated RNAi could be tremendously effective in reversing BCRP-mediated MDR and showed promises in overcoming MDR by gene therapeutic applications.  相似文献   

8.
The benzothiophene LY329146 reverses the drug resistance phenotype in multidrug resistance protein (MRP1)-overexpressing cells when dosed in combination with MRP1-associated oncolytics doxorubicin and vincristine. Additionally, LY329146 inhibited MRP1-mediated uptake of the MRP1 substrate LTC4 into membrane vesicles prepared from MRP1-overexpressing cells.  相似文献   

9.
Multidrug resistance (MDR) remains a significant challenge in cancer chemotherapy due to the overexpression of ATP-binding cassette drug-efflux transporters, namely P-glycoprotein (P-gp)/ATP-binding cassette subfamily B member 1. In this study, derivatives of N-alkylated monoterpene indole alkaloids such as N-(para-bromobenzyl) (NBBT), N-(para-methylbenzyl) (NMBT), and N-(para-methoxyphenethyl) (NMPT) moieties were investigated for the reversal of P-gp-mediated MDR in drug-resistant KB colchicine-resistant 8-5 (KB-ChR-8-5) cells. Among the three indole alkaloid derivatives, the NBBT exhibited the highest P-gp inhibitory activity in a dose-dependent manner. Further, it significantly decreased P-gp overexpression by inactivating the nuclear translocation of the nuclear factor kappa B p-50 subunit. In the cell survival assay, doxorubicin showed 6.3-fold resistance (FR) in KB-ChR-8-5 cells compared with its parental KB-3-1 cells. However, NBBT significantly reduced doxorubicin FR to 1.7, 1.3, and 0.4 and showed strong synergism with doxorubicin for all the concentrations studied in the drug-resistant cells. Furthermore, NBBT and doxorubicin combination decreased the cellular migration and showed increased apoptotic incidence by downregulating Bcl-2, then activating BAX, caspase 3, and p53. The present findings suggest that NBBT could be a lead candidate for the reversal of P-gp- mediated multidrug resistance in cancer cells.  相似文献   

10.
《Phytomedicine》2014,21(11):1221-1229
Our previous study has shown co-administration of guggulsterone resulted in significant increase in chemosensitivity of multidrug-resistant human breast cancer MCF-7/DOX cells to doxorubicin (DOX) in vitro. The present study was designed to investigate whether guggulsterone had the similar modulatory activities in vivo. MCF-7/DOX and MCF-7 xenograft mice models were established. At the end of the experiment (day 28), doxorubicin treatment alone did not significantly inhibit tumor growth in MCF-7/DOX xenograft, indicating that it retained doxorubicin resistance. Whereas, doxorubicin treatment alone significantly inhibited tumor growth in MCF-7 xenograft, suggesting that it maintained doxorubicin sensitivity. When doxorubicin and guggulsterone were co-administrated, their antitumor activities were augmented in MCF-7/DOX xenograft. However, combination therapy did not enhance the antitumor effects of doxorubicin in MCF-7 xenograft. The expression of proliferative cell nuclear antigens PCNA and Ki67 after doxorubicin treatment alone was not significantly different from that of vehicle group in MCF-7/DOX xenograft. On the contrary, doxorubicin treatment alone significantly reduced PCNA and Ki67 expression in MCF-7 xenograft. Combination therapy also significantly reduced PCNA and Ki67 expression in MCF-7/DOX xenograft, compared to doxorubicin treatment alone. However, combination therapy did not enhance the inhibitory effects of doxorubicin on PCNA and Ki67 expression in MCF-7 xenograft. Examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effects of guggulsterone on Bcl-2 and P-glycoprotein expression were the possible reason to increase chemosensitivity of MCF-7/DOX cells to doxorubicin in vivo. Examining body weight, hematological parameters, hepatic, cardiac and gastrointestinal tracts histopathology revealed that no significant signs of toxicity were related to guggulsterone. Guggulsterone might reverse doxorubicin resistance in vivo, with no severe side effects.  相似文献   

11.
Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy.  相似文献   

12.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 μM), GST P1-1 by sulphinpyrazone (IC50 = 66 μM), GST A1-1 by sulphasalazine, and camptothecin (34 and 74 μM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 μM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 μM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   

13.
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 microM), GST P1-1 by sulphinpyrazone (IC50 = 66 microM), GST Al-1 by sulphasalazine, and camptothecin (34 and 74 microM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 microM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 microM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.  相似文献   

14.
Angiogenesis is a multi‐step process that refers to the growth of new vessels from pre‐existing ones. Endothelial proliferation, migration, and tube formation constitute a critical step in angiogenesis. Recently, we demonstrated that a novel benzoxazine derivative, 6‐amino‐2,3‐dihydro‐3‐hydroxymethyl‐1,4‐benzoxazine (ABO) could improve the proliferation of human umbilical vein endothelial cells (HUVECs) without basic fibroblast growth factor (bFGF) and serum. In this study, we further tested its effect on endothelial angiogenesis with Matrigel assay, migration assay, and in vivo chick chorioallantoic membrane (CAM) assay. Our results showed that ABO effectively facilitated cell migration and promoted capillary‐like tube formation in vitro and in vivo. To elucidate the underlying mechanisms, we examined intracellular reactive oxygen species (ROS) level/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and superoxide dismutase (SOD) activities, nitric oxide (NO) level/endothelial nitric oxide synthase (eNOS) activity, and mitochondrial membrane potential (MMP). Our data indicated that ABO depressed ROS with inhibition of NADPH oxidase instead of SOD activity, stimulated NO production and eNOS activation, and restored MMP in HUVECs. Our findings suggest that ABO is a promising tool for exploring the mechanisms of angiogenesis and may have a therapeutic potential in ischemic pathologies. J. Cell. Physiol. 223: 202–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Phytochemistry Reviews - Pathogens that express resistance to multiple drugs are becoming the norm, complicating treatment and increasing human morbidity. Acylsugars or resin glycosides from the...  相似文献   

16.
The altered pharmacology of drugs in multidrug-resistant cells (decreased accumulation and retention) appears to be mediated by a high molecular weight integral membrane protein, called P-glycogprotein (P-gp). Agents known to reverse this pleiotropic drug resistance (chemosensitizers) have been shown to interact with P-gp; and as such, the inhibition of photoaffinity labeling by P-gp probes (such as [3H]azidopine) has been proposed as a basis for mass screening of chemosensitizers. In this study, we provide direct evidence that a novel calcium channel blocker (SR33557), which was 4.5 times more potent in sensitizing P388/ADR cells to doxorubicin as compared to verapamil (while inducing a similar increase in uptake and decrease in efflux of [14C]doxorubicin, did not compete for the [3H]azidopine-binding site on P-gp, whereas verapamil did. Moreover, SR33557, which is inherently photoactivable, did not photolabel P-gp, but a 65-kDa protein did appear to be an acceptor; and this binding was displaced by diltiazem and nifedipine, but not by verapamil. Finally, the implication for the participation of a sphingomyelin/sphingosine cycle (as a potential lipid second messenger system) in the chemosensitization of P388/ADR cells was investigated. 30 microM SR33557 induced a 72% inhibition in acid lysosomal sphingomyelinase activity, a 5-fold increase in sphingosine levels, and a 75% inhibition in intracellular protein kinase C activity. Although no direct link is established between these observations and P-gp activity, further studies on a possible sphingosine-mediated regulation of P-gp may yield information on the involvement of this second messenger system in the action of SR33557.  相似文献   

17.
Although multidrug resistance (mdr) may arise through a variety of mechanisms, the most widely studied and accepted form is associated with an increased concentration of P-glycoprotein (P-gp), a 170kd protein found in the membrane fraction of a number of mammalian cells. Since mdr seems to be related to the ability of resistant cells to extrude drugs and the circumvention of mdr is supposed to be due to the restored ability to accumulate drugs, membrane has been regarded as the crucial site for such a regulation and an important role for membrane ion exchangers has been suggested. The aim of this work was to elucidate whether the Na+/H+ antiporter is involved in the mechanism of regulation and circumvention of mdr and if 5-(N-ethyl-N-isopropyl) amiloride (EIPA), a selective inhibitor of the Na+/H+ exchanger, can modulate the functional expression of the mdr phenotype. The effect of EIPA on doxorubicin (DX) resistant cells (LoVo/DX) obtained from a human colon adenocarcinoma cell line (LoVo) was studied. EIPA at concentrations ranging from 10 to 50 μM was able to increase the antibiotic cytotoxicity in the resistant Lovo/DX cells. The reversal of DX resistance paralleled an increase of the ability of the cells to accumulate the drug. Both drug loading and sensitivity to the inhibitory effect of DX on cell proliferation were restored by EIPA in a dose-dependent way. These results suggest a new mechanism of mdr reversal and indicate that amiloride and its derivatives may be useful in reversing DX resistance and in enhancing the clinical effectiveness of chemotherapeutics.  相似文献   

18.
The ability as P-glycoprotein (P-gp, ABCB1) modulators of thirty (130) triterpenoids of the cucurbitane-type was evaluated on human L5178 mouse T-lymphoma cell line transfected with the human MDR1 gene, through the rhodamine-123 exclusion assay. Compounds (126, and 29, 30) were previously obtained from the African medicinal plant Momordica balsamina, through both isolation (115) and molecular derivatization (1626 and 29, 30). Compounds 2728 are two new karavilagenin C (34) derivatives having succinic acid moieties. Apart from 4, 6, 8, 10 and 11, most of the isolated compounds (115) displayed strong MDR reversing activity in a dose-dependent mode, exhibiting a many-fold activity when compared with verapamil, used as positive control. At the lowest concentration tested, compounds 2 and 7 were the most active. However, a decrease of activity was found for the acyl derivatives (1630). In a chemosensitivity assay, the MDR reversing activity of some of the most active compounds (13, 5, 7, 1215) was further assessed on the same cell model. All the tested compounds, excepting 15, corroborated the results of the transport assay, revealing to synergistically interact with doxorubicin. Structure–activity relationship studies, taking into account previous results, showed that different substitution patterns, at both the tetracyclic nucleus and the side chain, play important role in ABCB1 reversal activity. An optimal lipophilicity was also recognized.  相似文献   

19.
Multidrug resistance-associated protein (MRP) and P-glycoprotein (P-gp) are drug efflux pumps conferring multidrug resistance to tumor cells. RU486, an antiprogestatin drug known to inhibit P-gp function, was examined for its effect on MRP activity in MRP-overexpressing lung tumor GLC4/Sb30 cells. In such cells, the antihormone compound was found to increase intracellular accumulation of calcein, a fluorescent compound transported by MRP, in a dose-dependent manner, through inhibition of cellular export of the dye; in contrast, it did not alter calcein levels in parental GLC4 cells. RU486, when used at 10 microM, a concentration close to plasma concentrations achievable in humans, strongly enhanced the sensitivity of GLC4/Sb30 cells towards two known cytotoxic substrates of MRP, the anticancer drug vincristine and the heavy metal salt potassium antimonyl tartrate. Vincristine accumulation levels were moreover up-regulated in RU486-treated GLC4/Sb30 cells. In addition, such cells were demonstrated to display reduced cellular levels of glutathione which is required for MRP-mediated transport of some anticancer drugs. These findings therefore demonstrate that RU486 can down-modulate MRP-mediated drug resistance, in addition to that linked to P-gp, through inhibition of MRP function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号