首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   

2.
Representative microbial cultures from an oil reservoir and electrochemical techniques including potentiodynamic scan and linear polarization were used to investigate the time dependent corrosion rate associated with control of biogenic sulphide production through addition of nitrite, nitrate and a combination of nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB) and nitrate. The addition of nitrate alone did not prevent the biogenic production of sulphide but the produced sulphide was eventually oxidized and removed from the system. The addition of nitrate and NR-SOB had a similar effect on oxidation and removal of sulphide present in the system. However, as the addition of nitrate and NR-SOB was performed towards the end of sulphide production phase, the assessment of immediate impact was not possible. The addition of nitrite inhibited the biogenic production of sulphide immediately and led to removal of sulphide through nitrite mediated chemical oxidation of sulphide. The real time corrosion rate measurement revealed that in all three cases an acceleration in the corrosion rate occurred during the oxidation and removal of sulphide. Amendments of nitrate and NR-SOB or nitrate alone both gave rise to localized corrosion in the form of pits, with the maximum observed corrosion rates of 0.72 and 1.4 mm year−1, respectively. The addition of nitrite also accelerated the corrosion rate but the maximum corrosion rate observed following nitrite addition was 0.3 mm year−1. Furthermore, in the presence of nitrite the extent of pitting was not as high as those observed with other control methods.  相似文献   

3.
Microbial souring (H2S production) in porous media was investigated in an anaerobic upflow porous media reactor at 60 degrees C using microbial consortia obtained from oil reservoirs. Multiple carbon sources (formate, acetate, propionate, iso- and n-butyrates) found in reservoir waters as well as sulfate as the electron acceptor was used. Kinetics and rates of souring in the reactor system were analyzed. Higher volumetric substrate consumption rates (organic acids and sulfate) and a higher volumetric H(2)S production rate were found at the from part of the reactor column after H(2)S production had stabilized. Concentration gradients for the substrates (organic acids and sulfate) and H(2)S were generated along the column. Biomass accumulation throughout the entire column was observed. The average specific sulfate reduction rate (H(2)S production rate) in the present reactor after H(2)S production had stabilized was calculated to be 11062 +/-2.22 mg sulfate-S/day g biomass. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
The effect of microbial control of souring on the extent of corrosion was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in an SRB consortium enriched from produced water from a Canadian oil reservoir. The average corrosion rate induced by the SRB consortium (1.4 g x m(-2) x day(-1)) was faster than that observed in the presence of strain Lac6 (0.2 g x m(-2) x day(-1)). Examination of the metallic coupons at the end of the tests indicated a uniform corrosion in both cases. Addition of CVO and 10 mM nitrate to a fully grown culture of Lac6 or the SRB consortium led to complete removal of sulfide from the system and a significant increase in the population of CVO, as determined by reverse sample genome probing. In the case of the SRB consortium addition of just nitrate (10 mM) had a similar effect. When grown in the absence of nitrate, the consortium was dominated by Desulfovibrio sp. strains Lac15 and Lac29, while growth in the presence of nitrate led to dominance of Desulfovibrio sp. strain Lac3. The addition of CVO and nitrate to the Lac6 culture or nitrate to the SRB consortium accelerated the average corrosion rate to 1.5 and 2.9 g x m(-2) x day(-1), respectively. Localized corrosion and the occurrence of pitting were apparent in both cases. Although the sulfide concentration (0.5-7 mM) had little effect on corrosion rates, a clear increase of the corrosion rate with increasing nitrate concentration was observed in experiments conducted with consortia enriched from produced water.  相似文献   

5.
The biological degradation of nitrate and sulfate was investigated using a mixed microbial culture and lactate as the carbon source, with or without limited-oxygen fed. It was found that sulfate reduction was slightly inhibited by nitrate, since after nitrate depletion the sulfate reduction rate increased from 0.37 mg SO4 2?/mg VSS d to 0.71 mg SO4 2?/mg VSS d, and the maximum rate of sulfate reduction in the presence of nitrate corresponded to 56 % of the non-inhibited sulfate reduction rate determined after nitrate depleted. However, simultaneous but not sequential reduction of both oxy-anions was observed in this study, unlike some literature reports in which sulfate reduction starts only after depletion of nitrate, and this case might be due to the fact that lactate was always kept above the limiting conditions. At limited oxygen, the inhibited effect on sulfate reduction by nitrate was relieved, and the sulfate reduction rate seemed relatively higher than that obtained without limited-oxygen fed, whereas kept almost constant (0.86–0.89 mg SO4 2?/mg VSS d) cross the six ROS states. In contrast, nitrate reduction rates decreased substantially with the increase in the initial limited-oxygen fed, showing an inhibited effect on nitrate reduction by oxygen. Kinetic parameters determined for the mixed microbial culture showed that the maximum specific sulfate utilization rate obtained (0.098?±?0.022 mg SO4 2?/(mg VSS h)) was similar to the reported typical value (0.1 mg SO4 2?/(mg VSS h)), also indicating a moderate inhibited effect by nitrate.  相似文献   

6.
7.
Iron salts are often used in activated sludge treatment plants as coagulants or to improve reactor performance. Previous studies have indicated that iron itself has an impact on the activated sludge process. However, the interaction of iron with nitrite or nitrate present in the sludge has received little attention. In this research, the influence of addition of Fe(II) or Fe(III), alone or together with NO(2)(-) or NO(3)(-) on bench-scale activated sludge reactors was examined. Large differences were established between the distinct treatments, regarding reactor performance, sludge characteristics as well as microbial community. Ferric iron was more detrimental than ferrous iron. In some cases, nitrite was found to enhance inhibitory effects of the added iron, whereas nitrate had more a neutralizing effect. It was found that precipitation of phosphate by the iron was not responsible for the observed inhibition. Decrease in pH upon formation of iron hydroxides and the impairment of the floc structure could partially explain the toxicity of the iron dosages. The formation of toxic nitrogen oxides, such as nitric oxide, can also be of importance. The observed positive effect of nitrate on the floc activity is of interest and warrants further elucidation.  相似文献   

8.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   

9.
The identification of bacteria in oil production facilities has previously been based on culture techniques. However, cultivation of bacteria from these often-extreme environments can lead to errors in identifying the microbial community members. In this study, molecular techniques including fluorescence in situ hybridization, PCR, denaturing gradient gel electrophoresis, and sequencing were used to track changes in bacterial biofilm populations treated with nitrate, nitrite, or nitrate + molybdate as agents for the control of sulfide production. Results indicated that nitrite and nitrate + molybdate reduced sulfide production, while nitrate alone had no effect on sulfide generation. No long-term effect on sulfide production was observed. Initial sulfate-reducing bacterial numbers were not influenced by the chemical treatments, although a significant increase in sulfate-reducing bacteria was observed after termination of the treatments. Molecular analysis showed a diverse bacterial population, but no major shifts in the population due to treatment effects were observed.  相似文献   

10.
异化硝酸盐和亚硝酸盐还原产铵是氮转化附属途径,为生态系统中氮的重复利用提供了依据,已成为近年来的研究热点。据报道,氮源的种类及浓度不同异化还原产铵的发生机制及强度具有差异性,决定着微生物产铵的效率,因此,有必要明确不同氮源异化还原产铵的代谢机制。本文详细论述了参与硝酸盐和亚硝酸盐异化还原产铵过程的相关微生物种类、产铵途径及其机理;系统分析了单一氮源和混合氮源对不同微生物产铵的影响和差异,比较了放线菌与其他微生物产铵的优势,并对未来的研究方向进行了展望,旨在为微生物异化硝酸盐和亚硝酸盐还原产铵提供理论基础。  相似文献   

11.
Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H(2)S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H(2)S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the epsilon-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H(2)S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H(2)S was dictated by the electron donor (lactate) concentration, irrespective of mechanism.  相似文献   

12.
Copper(II)-sparteine complexes, [CuII{(-)Sp}(NO2)Cl] (1) and [CuII{(−)Sp}(NO3)Cl] (2) (Sp = sparteine) with chelating nitrite and nitrate ligands, respectively, have been synthesized and structurally characterized. The penta-coordinated 1 or 2 exhibits distorted square pyramidal geometry and shows characteristic EPR spectra with g||: 2.27 and g: 2.06. 1 and 2 behave similarly towards the catalytic epoxidation of alkenes as well as oxidation of alcohols. Though the epoxidation of cyclohexene using 1 or 2 as a catalyst and tertiarybutyl hydroperoxide (TBHP) as an oxidant at 298 K in acetonitrile results in 100% cyclohexene oxide product, under identical reaction conditions styrene selectively transforms to benzaldehyde (∼90%) instead of any styrene oxide. However, at higher temperature (353 K) the selectivity of cyclohexene to corresponding epoxide formation decreases appreciably and additional products, cyclohexanol and cyclohexanone are formed. Furthermore, 1 or 2 effectively catalyzes the oxidation of benzyl alcohol to benzoic acid and cyclohexanol to cyclohexanone in presence of molecular oxygen (O2) as an oxidant at 353 K in acetonitrile.  相似文献   

13.
Previous studies have reported increased serum concentrations of nitrite/nitrate – the degradation products of nitric oxide – in Plasmodium vivax malaria and uncomplicated Plasmodium falciparum malaria. In all these studies, however, nitrite/nitrate has been measured spectrometrically using Griess reagent which carries major disadvantages in the determination of serum nitrite/nitrate. The method does not allow an exact differentiation of nitrite and biogenic amines that are physiologically present in plasma. In the present study we introduce high-performance liquid chromatography as a new, accurate and cost effective method for determination of serum nitrite/nitrate levels. Significantly increased nitrate concentrations were found in malaria patients and serum values remained above normal levels for at least 21 days. It could be shown that our HPLC method is a sensitive and cost-effective method for direct determination of nitrite/nitrate in serum samples, which is not influenced by the presence of biogenic amines.  相似文献   

14.
15.
Stable microbial communities associated with health can be disrupted by altered environmental conditions. Periodontal diseases are associated with changes in the resident oral microflora. For example, as gingivitis develops, a key change in the microbial composition of dental plaque is the ascendancy of Actinomyces spp. and gram-negative rods at the expense of Streptococcus spp. We describe the use of an in vitro model to replicate this population shift, first with a dual-species model (Actinomyces naeslundii and Streptococcus sobrinus) and then using a microcosm model of dental plaque. The population shift was induced by environmental changes associated with gingivitis, first by the addition of artificial gingival crevicular fluid and then by a switch to a microaerophilic atmosphere. In addition to the observed population shifts, confocal laser scanning microscopy also revealed structural changes and differences in the distribution of viable and nonviable bacteria associated with the change in environmental conditions. This model provides an appropriate system for the further understanding of microbial population shifts associated with gingivitis and for the testing of, for example, antimicrobial agents.  相似文献   

16.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

17.
Nitrate reductase (NR) induction is enhanced by exogenously supplied sucrose in excised pea roots exposed to both exogenous nitrate and exogenous nitrite. NR synthesis is preferentially supported by sugars transported to the cells at the moment, however NR induction can take place for some time without exogenous sugar influx if roots are saturated with sugars during precultivation. Steady high NR levels are dependent on steady sugar and nitrate influxes. NR induction is low in roots precultivated for 20 h without sucrose although sugar content is still high in them. This suggests that compartmentation of sugars in the cells is of major importance during NR induction. Total nitrate content in roots exposed to nitrate is not influenced by sucrose supplied together with nitrate. Some nitrite is oxidized to nitrate in roots exposed to exogenous nitrite ; we assume that this nitrate is responsible for NR induction. Our results indicate that sugars, besides many indirect effects on NR induction, may also directly influence NR synthesis either as coinducers or as derepressors of NR synthesis. Our results further show that NR is not a product-inducible enzyme.  相似文献   

18.
Various analytical techniques have been developed to determine nitrite and nitrate, oxidation metabolites of nitric oxide (NO), in biological samples. HPLC is a widely used method to quantify these two anions in plasma, serum, urine, saliva, cerebrospinal fluid, tissue extracts, and fetal fluids, as well as meats and cell culture medium. The detection principles include UV and VIS absorbance, electrochemistry, chemiluminescence, and fluorescence. UV or VIS absorbance and electrochemistry allow simultaneous detection of nitrite and nitrate but are vulnerable to the severe interference from chloride present in biological samples. Chemiluminescence and fluorescence detection improve the assay sensitivity and are unaffected by chloride but cannot be applied to a simultaneous analysis of nitrite and nitrate. The choice of a detection method largely depends on sample type and facility availability. The recently developed fluorometric HPLC method, which involves pre-column derivatization of nitrite with 2,3-diaminonaphthalene (DAN) and the enzymatic conversion of nitrate into nitrite, offers the advantages of easy sample preparation, simple derivatization, stable fluorescent derivatives, rapid analysis, high sensitivity and specificity, lack of interferences, and easy automation for determining nitrite and nitrate in all biological samples including cell culture medium. To ensure accurate analysis, care should be taken in sample collection, processing, and derivatization as well as preparation of reagent solutions and mobile phases, to prevent environmental contamination. HPLC methods provide a useful research tool for studying NO biochemistry, physiology and pharmacology.  相似文献   

19.
A simple and sensitive flow‐injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu–Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02–50 and 0.01–50 µg N/L [R2 = 0.9984 (n = 8) and R2 = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8–4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu–Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO43?, SO42? and HCO3?) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Chloroplasts take up cytosolic nitrite during nitrate assimilation. In this study we identified a nitrite transporter located in the chloroplasts of higher plants. The transporter, CsNitr1-L, a member of the proton-dependent oligopeptide transporter (POT) family, was detected during light-induced chloroplast development in de-etiolating cucumber seedlings. We detected a CsNitr1-L-green fluorescent protein (GFP) fusion protein in the chloroplasts of leaf cells and found that an immunoreactive 51 kDa protein was present in the isolated inner envelope membrane of chloroplasts. CsNitr1-L has an isoform, CsNitr1-S, with an identical 484 amino acid core sequence; however, in CsNitr1-S the 120 amino acid N-terminal extension is missing. Saccharomyces cerevisiae cells expressing CsNitr1-S absorbed nitrite from an acidic medium at a slower rate than mock-transformed control cells, and accumulated nitrite to only one-sixth the concentration of the control cells, suggesting that CsNitr1-S enhances the efflux of nitrite from the cell. Insertion of T-DNA in a single CsNitr1-L homolog (At1g68570) in Arabidopsis resulted in nitrite accumulation in leaves to more than five times the concentration found in the wild type. These results show that it is possible that both CsNitr1-L and CsNitr1-S encode efflux-type nitrite transporters, but with different subcellular localizations. CsNitr1-L may possibly load cytosolic nitrite into chloroplast stroma in the chloroplast envelope during nitrate assimilation. The presence of genes homologous to CsNitr1-L in the genomes of Arabidopsis and rice indicates that facilitated nitrite transport is of general physiological importance in plant nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号