首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reasons of high level of human mitochondrial DNA (mtDNA) variability remain to be largely unclear. We analyze here three probable mechanisms of mutagenesis leading to generation of mtDNA nucleotide substitutions: (1) deamination of DNA bases; (2) tautomeric migrations of protons in nitrous bases; and (3) hydrolysis of glycoside link between DNA bases and carbohydrate residue on the background of free radical damage of the mitochondrial DNA polymerase gamma. By means of quanto-chemical calculations, it was shown that the most substantiated mechanism of mutation generation is hydrolysis of N-glycoside link. This mechanism is suggestive to be more prominent on the H-strand, which remains to be single-stranded for a long time during the mtDNA replication. It was revealed also that hydrolytic deamination of adenines on the single-stranded H-strand is among of the most probable mechanisms leading to high frequency of T --> C transitions seen in the L-strand mutational spectra of the mtDNA major non-coding region.  相似文献   

2.
Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.  相似文献   

3.
Attack on DNA by some reactive nitrogen species results in deamination of adenine and guanine, leading to the formation of hypoxanthine and xanthine, respectively. Published levels of these products in cellular DNA have varied widely. Although these two deamination products are often measured by GC-MS analysis, the procedure of acid hydrolysis to release DNA bases for derivatization poses a risk of artifactual deamination of the DNA. In this study, we demonstrated the artifactual formation of these two deamination products during acid hydrolysis and hence developed a method for detecting and measuring 2'-deoxyinosine, the nucleoside of hypoxanthine. Our assay for 2'-deoxyinosine employs nuclease P1 and alkaline phosphatase to achieve release of the nucleosides from DNA, followed by HPLC prepurification with subsequent GC-MS analysis of the nucleosides. This assay detected an increase in the levels of 2'-deoxyinosine in DNA when commercial salmon testis DNA was treated with nitrous acid. We also used it to measure levels in various rat tissues of both normal and endotoxin-treated rats, but could not find increased 2'-deoxyinosine formation in tissues even though *NO production was substantially increased.  相似文献   

4.
Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H(2)O(2)-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria.  相似文献   

5.
Ramreddy T  Sen S  Rao BJ  Krishnamoorthy G 《Biochemistry》2003,42(41):12085-12094
RecA-catalyzed DNA recombination is initiated by a mandatory, high-energy form of DNA in RecA-nucleoprotein filaments, where bases are highly unstacked and the backbone is highly unwound. Interestingly, only the energetics consequent to adenosine triphosphate (ATP) binding, rather than its hydrolysis, seems sufficient to mediate such a high-energy structural hallmark of a recombination filament. The structural consequence of ATP hydrolysis on the DNA part of the filament thus remains largely unknown. We report time-resolved fluorescence dynamics of bases in RecA-DNA complexes and demonstrate that DNA bases in the same exhibit novel, motional dynamics with a rotational correlation time of 7-10 ns, specifically in the presence of ATP hydrolysis. When the ongoing ATP hydrolysis of RecA-DNA filament is "poisoned" by a nonhydrolyzable form of ATP (ATPgammaS), the motional dynamics cease and reveal a global motion with a rotational correlation time of >20 ns. Such ATP hydrolysis-induced flexibility ensues in single-stranded as well as double-stranded bases of RecA-DNA filaments. These results suggest that the role of ATP hydrolysis is to induce a high level of backbone flexibility in RecA-DNA filament, a dynamic property that is likely to be important for efficient strand exchanges in ATP hydrolysis specific RecA reactions. It is the absence of these motions that may cause high rigidity in RecA-DNA filaments in ATPgammaS. Dynamic light scattering measurement comparisons of RecA-ss-DNA filaments formed in ATPgammaS vs that of ATP confirmed such an interpretation, where the former showed a complex of larger (30 nm) hydrodynamic radius than that of latter (12-15 nm). Taken together, these results reveal a more dynamic state of DNA in RecA-DNA filament that is hydrolyzing ATP, which encourage us to model the role of ATP hydrolysis in RecA-mediated DNA transactions.  相似文献   

6.
Mitochondrial DNA (mtDNA) is believed to be highly vulnerable to age-associated damage and mutagenesis by reactive oxygen species (ROS). However, somatic mtDNA mutations have historically been difficult to study because of technical limitations in accurately quantifying rare mtDNA mutations. We have applied the highly sensitive Duplex Sequencing methodology, which can detect a single mutation among >107 wild type molecules, to sequence mtDNA purified from human brain tissue from both young and old individuals with unprecedented accuracy. We find that the frequency of point mutations increases ∼5-fold over the course of 80 years of life. Overall, the mutation spectra of both groups are comprised predominantly of transition mutations, consistent with misincorporation by DNA polymerase γ or deamination of cytidine and adenosine as the primary mutagenic events in mtDNA. Surprisingly, G→T mutations, considered the hallmark of oxidative damage to DNA, do not significantly increase with age. We observe a non-uniform, age-independent distribution of mutations in mtDNA, with the D-loop exhibiting a significantly higher mutation frequency than the rest of the genome. The coding regions, but not the D-loop, exhibit a pronounced asymmetric accumulation of mutations between the two strands, with G→A and T→C mutations occurring more often on the light strand than the heavy strand. The patterns and biases we observe in our data closely mirror the mutational spectrum which has been reported in studies of human populations and closely related species. Overall our results argue against oxidative damage being a major driver of aging and suggest that replication errors by DNA polymerase γ and/or spontaneous base hydrolysis are responsible for the bulk of accumulating point mutations in mtDNA.  相似文献   

7.
8.
The 4S RNA genes in HeLa mitochondrial DNA (mtDNA) have been mapped by electron microscopy using the electron-opaque label ferritin. This method is based on the high affinity interaction between the protein, avidin, and biotin. 4S RNA, covalently coupled to biotin, was hybridized to single-stranded mtDNA. The hybrids were then labeled with ferritin-avidin conjugates. The positions of ferritin-labeled 4S RNA genes were determined relative to the rRNA genes on both heavy (H) and light (L) strands of mtDNA. This region was recognized as a duplex segment after hybridization either with rRNA in the case of H strands or with DNA complementary to rRNA in the case of L strands.Our studies suggest that at least nineteen 4S RNA genes are present in the HeLa mitochondrial genome. On the H strand, we have confirmed the nine map positions found in a previous electron microscope mapping study (Wu et al., 1972) and obtained evidence for three additional 4S RNA genes. On the L strand, seven 4S RNA genes have been mapped. The nineteen genes are distributed more or less uniformly around the genome. There is a pair of closely spaced genes, approximately 150 nucleotides apart, on the H strand, and another closely spaced pair on the L strand.  相似文献   

9.
The interaction of archaeal family B DNA polymerases with deaminated bases has been examined. As determined previously by our group, the polymerase binds tightly to uracil (the deamination product of cytosine), in single-stranded DNA, and stalls replication on encountering this base. DNA polymerisation was also inhibited by the presence of hypoxanthine, the deamination product of adenine. Quantitative binding assays showed that the polymerase bound DNA containing uracil 1.5-4.5-fold more strongly than hypoxanthine and site-directed mutagenesis suggested that the same pocket was used for interaction with both deaminated bases. In contrast the polymerase was insensitive to xanthine, the deamination product of guanine. Traces of uracil and hypoxanthine in DNA can lead to inhibition of the PCR by archaeal DNA polymerases, an important consideration for biotechnology applications. Dual recognition of uracil and hypoxanthine may be facilitated by binding the bases with the glycosidic bond in the anti and syn conformation, respectively.  相似文献   

10.
Quantitation of 5-methylcytosine in DNA after acid hydrolysis has been inaccurate because deamination of cytosine and 5-methylcytosine occurs during the hydrolysis procedure. There is little information in the literature regarding the use of hydrofluoric acid (HF) for DNA hydrolysis and we have therefore undertaken a systematic study of this process. The deoxyribonucleotides of cytosine and 5-methylcytosine were shown not to undergo detectable levels of deamination during prolonged periods (up to 24 h) at 80 degrees C in 48% HF. Kinetic studies show that the release of purine and pyrimidine bases was complete by 4 h under these conditions. Analysis of the 5-methylcytosine content of DNA from various tissues gave levels that were very close to the values reported in the literature. This method is ideally suited for the determination of the overall cytosine methylation levels in DNA.  相似文献   

11.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

12.
A new method for the determination of the level of DNA methylation was established. The method involves enzymatic hydrolysis of DNA by nuclease P1 and bacterial alkaline phosphatase, and separation of the resulting deoxyribonucleosides by HPLC. By this method, DNA was hydrolysed completely to the five deoxyribonucleosides and the complete base composition was determined. Pairing bases were shown to occur in similar amounts, and analysis could be performed on as little as 1 microgram of DNA with a high degree of reproducibility. Among other enzymes hitherto used in order to hydrolyze DNA, micrococcal nuclease, phosphodiesterase II and nuclease P1 have been shown to cause deamination of deoxyadenosine, while deoxyribonuclease I, phosphodiesterase I and bacterial alkaline phosphatase have been shown to be sensitive to contamination by RNA, and to release 5-methyldeoxycytidine at a slower rate than the other four deoxyribonucleosides. Neither of these effects was seen with the new method.  相似文献   

13.
Humans are exposed to many carcinogens, but the most significant may be the reactive species derived from metabolism of oxygen and nitrogen. Nitric oxide seems unlikely to damage DNA directly, but nitrous acid produces deamination and peroxynitrite leads to both deamination and nitration. Scavenging of reactive nitrogen species generated in the stomach may be an important role of flavonoids, flavonoids and other plant-derived phenolic compounds. Different reactive oxygen species produce different patterns of damage to DNA bases, e.g., such patterns have been used to implicate hydroxyl radical as the ultimate agent in H(2)O(2)-induced DNA damage. Levels of steady-state DNA damage in vivo are consistent with the concept that such damage is a major contributor to the age-related development of cancer and so such damage can be used as a biomarker to study the effects of diet or dietary supplements on risk of cancer development, provided that reliable assays are available. Methodological questions addressed in this article include the validity of measuring 8-hydroxydeoxyguanosine (8OHdG) in cellular DNA or in urine as a biomarker of DNA damage, the extent of artifact formation during analysis of oxidative DNA damage by gas chromatography-mass spectrometry and the levels of oxidative damage in mitochondrial DNA.  相似文献   

14.
Alkaline hydrolysis followed by deamination with nitrous acid was applied for the first time to a glycoprotein, human plasma alpha(1)-acid glycoprotein (orosomucoid). This procedure, which specifically cleaves the glycosaminidic bonds, yielded well-defined oligosaccharides. The trisaccharides, which were obtained from the native protein, consisted of a sialic acid derivative, galactose and 2,5-anhydromannose. The linkage between galactose and 2,5-anhydromannose is most probably a (1-->4)-glycosidic bond. A hitherto unknown linkage between N-acetylneuraminic acid and galactose was also established, namely a (2-->2)-linkage. The three linkages between sialic acid and galactose described in this paper appear to be about equally resistant to mild acid hydrolysis. The disaccharide that was derived from the desialized glycoprotein consisted of galactose and 2,5-anhydromannose. Evidence was obtained for the presence of a new terminal sialyl-->N-acetylglucosamine disaccharide accounting for approximately 1mol/mol of protein. The presence of this disaccharide may explain the relatively severe requirements for the complete acid hydrolysis of the sialyl residues. The present study indicates that alkaline hydrolysis followed by nitrous acid deamination in conjunction with gas-liquid chromatography will afford relatively rapid determination of the partial structure of the complex carbohydrate moiety of glycoproteins.  相似文献   

15.
A method to separate the four major bases (cytosine, guanine, thymine and adenine) and the two minor modified bases (5-methylcytosine and 6N-methyladenine) in DNA has been developed. For optimal separation, several different buffer systems are available for isocratic elution. The 12 5-methylcytosine (5-mC) residues in the plasmid pBR322 can be determined with a deviation of less than 3% of the expected value and have been used for internal standardization. Formic acid hydrolysis of bases and probably of DNA does not lead to the deamination of cytosine or 5-mC and thus can be used routinely for DNA hydrolysis. Adenovirus or baculovirus DNA does not contain detectable amounts of 5-mC. The distribution of 5-mC in hamster cell DNA appears to be nonrandom in that different 5'-CpG-3'-containing restriction sites are methylated to different extents.  相似文献   

16.
Formation of anhydrosugars in the chemical depolymerization of heparin.   总被引:77,自引:0,他引:77  
J E Shively  H E Conrad 《Biochemistry》1976,15(18):3932-3942
In the reactions used to break heparin down to mono- and oligosaccharides, androsugars are formed at two stages. The first of these is the well-known cleavage of heparin with nitrous acid to convert the N-sulfated D-glucosamines to anhydro-D-mannose residues; this reaction has been studied in detail. It is demonstrated here that only low pH (less than 2.5) reaction conditions favor the deamination of N-sulfated D-glucosamine residues; the reaction proceeds very slowly at pH 3.5 or above. On the other hand, N-unsubstituted amino sugars are deaminated at a maximum rate at pH 4 with markedly reduced rates at pH2 or pH6. At room temperature solutions of nitrous acid lose one-fourth to one-third of their capacity to deaminate amino sugars in 1 h at all pHs. A low pH nitrous acid reagent which will convert heparin quantitatively to its deamination products in 10 min at room temperature is described, and a comparison of the effectiveness of this reagent with other commonly used nitrous acid reagents is presented. It is also shown that conditions used for acid hydrolysis of heparin convert approximately one-fourth of the L-iduronosyluronic acid 2-sulfate residues to a 2,5-anhydrouronic acid. This product is an artifact of the reaction conditions, and its formation represents one of several pathways followed in the acid-catalyzed cleavage of the glycosidic bond of the sulfated L-idosyluronic acid residues.  相似文献   

17.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

18.
Genomic DNA is constantly being damaged and repaired and our genomes exist at lesion equilibrium for damage created by endogenous mutagens. Mitochondrial DNA (mtDNA) has the highest lesion equilibrium frequency recorded; presumably due to damage by H2O2 and free radicals generated during oxidative phosphorylation processes. We measured the frequencies of single strand breaks and oxidative base damage in mtDNA by ligation-mediated PCR and a quantitative Southern blot technique coupled with digestion by the enzymes endonuclease III and formamidopyrimidine DNA glycosylase. Addition of 5 mM alloxan to cultured rat cells increased the rate of oxidative base damage and, by several fold, the lesion frequency in mtDNA. After removal of this DNA damaging agent from culture, the single strand breaks and oxidative base damage frequency decreased to levels slightly below normal at 4 h and returned to normal levels at 8 h, the overshoot at 4 h being attributed to an adaptive up-regulation of mitochondrial excision repair activity. Guanine positions showed the highest endogenous lesion frequencies and were the most responsive positions to alloxan-induced oxidative stress. Although specific bases were consistently hot spots for damage, there was no evidence that removal of these lesions occurred in a strand-specific manner. The data reveal non-random oxidative damage to several nucleotides in mtDNA and an apparent adaptive, non-strand selective response for removal of such damage. These are the first studies to characterize oxidative damage and its subsequent removal at the nucleotide level in mtDNA.  相似文献   

19.
The chemistry of DNA damage from nitric oxide and peroxynitrite   总被引:19,自引:0,他引:19  
Nitric oxide is a key participant in many physiological pathways; however, its reactivity gives it the potential to cause considerable damage to cells and tissues in its vicinity. Nitric oxide can react with DNA via multiple pathways. Once produced, subsequent conversion of nitric oxide to nitrous anhydride and/or peroxynitrite can lead to the nitrosative deamination of DNA bases such as guanine and cytosine. Complex oxidation chemistry can also occur causing DNA base and sugar oxidative modifications. This review describes the different mechanisms by which nitric oxide can damage DNA. First, the physiological significance of nitric oxide is discussed. Details of nitric oxide and peroxynitrite chemistry are then given. The final two sections outline the mechanisms underlying DNA damage induced by nitric oxide and peroxynitrite.  相似文献   

20.
Damage to DNA bases resulting from deamination, oxidation, and alkylation is mainly repaired by base-excision repair. BER is initiated by DNA glycosylases, which recognize damaged bases and excise them from DNA by hydrolyzing the N-glycosidic bond between the base and the sugar phosphate backbone of DNA to generate an abasic site. Different human and E. coli DNA glycosylases have been cloned and characterized, each one with unique substrate specificity. Some of them additionally have AP lyase activity, which enables them to cleave the bond between the sugar and phosphate 3' to the damaged site. BER consist of two repair pathways (short or long) in which one or more nucleotides are introduced respectively. In conclusion, it seems to be likely that BER pathways are essential for genomic repair and stability in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号