首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.  相似文献   

2.
An influence of some Random Amplified Polymorphic DNA (RAPD) reaction factors on resulting banding pattern and the ability of RAPD technique to detect DNA polymorphism among six economically important pea cultivars was tested. Relatively high level of DNA polymorphism among peas was observed, using polyacrylamide/urea gels and silver staining. Altogether 13 arbitrarily designed primers produced 313 amplification products. In addition 59 polymorphisms were found. These polymorphisms can serve as potential genetic markers. RAPD data were processed using cluster analysis and plotted as dendrogram. Each tested cultivar was clearly distinguished from the others. Moreover,Pisum sativum andP. sativum subsp.arvense cultivars were separated into 2 different clusters, according to their systematic relationships.  相似文献   

3.
Variations in random amplified polymorphic DNA (RAPD) profiles from leaf, stem, root, and tuber tissues were observed in case of two glasshouse grown potato cultivars using 40 decamer primers suggesting possible danger of cultivar misidentification. Genomic DNA extracted from the above four tissues of four in vitro grown potato cultivars, however, produced more uniform RAPD fingerprints. A significant effect of random primers on fingerprint uniformity was observed in case of both glasshouse and in vitro grown samples. A new concept of stability index for random primers based on homogeneity of RAPD profiles obtained from different tissues of a single plant have been introduced. It is concluded that RAPD analysis of genomic DNA extracted from any tissue of in vitro grown potato plants using 14 selected decamer primers could be used to develop RAPD fingerprints for identification of Indian potato cultivars.  相似文献   

4.
AIMS: To guarantee the endemic genetic background of the isolates obtained in yeast isolation programs, it is necessary to differentiate between endemic and commercial strains because the progressive use of commercial yeast in wine areas around the world would affect the autochthonous yeast populations. METHODS AND RESULTS: Mitochondrial DNA restriction analysis, electrophoretic karyotyping and random amplification of polymorphic DNA (RAPD) were evaluated as experimental approaches to correlate genomic polymorphism and geographic origin of native wine yeast strains. The three molecular methods were capable of detecting a European commercial strain among native Chilean strains; however, RAPD proved to have the best performance. CONCLUSIONS: The molecular polymorphism analysis is useful to evaluate the geographical origin of native yeast isolates and confirms or refutes the genetic background of currently marketed strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits a genetic characterization of native yeast populations and confirms its utility as a tool for evaluating if a native isolate derives from the region where it was collected, permitting, furthermore, to develop studies on the evolution of native yeast populations and to evaluate the effect of introduced yeasts on these populations.  相似文献   

5.
The role of random amplified polymorphic DNA (RAPD) markers in detecting intra-clonal genetic variability in vegetatively propagated UPASI-9 clone of tea (Camellia sinensis) was studied. Twenty five decamer primers were used, of which three did not amplify, three gave single bands and the rest of nineteen primers generated upto twelve bands (an average of 6.3 bands per primer). Twenty one primers exhibiting amplified products gave monomorphic banding patterns. Only one primer (OPE-17) gave a unique extra band of similar size in four plants.  相似文献   

6.
Commercial peppermint (P) (Mentha × piperita L. ev. Black Mitcham), native spearmint (NS) (M. spicata L.) and Scotch spearmint (SS) (M. × gracillis Sole cv Baker) petioles and orange mint (OM) (M. citrata Ehrh.) leaf disks were cocultivated with a number of Agrobacterium tumefaciens strains. P, SS and OM initiated tumor-like callus tissue on growth regulator-free MS medium after cocultivation with strain A281, a hypervirulent agropine strain containing Ti plasmid pTiBo542. Callus did not initiate from explants cocultivated with strain C58, a virulent nopaline strain; with A 136, a plasmidless strain, or from uninoculated controls. A281-derived callus was maintained on growth regulator-free medium in the absence of antibiotics for up to two years with no bacterial outgrowth. No shoots regenerated from any of the tumors on regeneration medium. Five of seven OM callus lines assayed gave a positive signal for agropine. DNA extracted from OM tumor tissue hybridized to a DNA probe specific to the T-DNA region of pTi plasmid. Genomic Southern analysis of DNA from tumors of P and SS indicated that one to a few copies of the T-DNA integrated into the mint chromosomes. PCR amplification of genomic DNA with primers specific for one of the T-DNA encoded genes yielded fragments that, when analyzed by restriction enzyme mapping and on Southern blots, corresponded to the cytokinin biosynthesis gene ipt. These results demonstrate transformation of three species of mint and the potential for using A. tumefaciens to transfer economically important genes into commercial mint cultivars.Abbreviations BA benzyladenine - CW coconut water - Cef cefotaxime - P peppermint - SS scotch spearmint - NS native spearmint - OM orange mint - BM basal medium - MS Murashige and Skoog (1962) - PAR photosynthetically active radiation - CTAB hexadecylatrimethylammonium bromide - ipt isopentenyl transferase Received for publication 1994. Published as Miscellaneous Paper No. 1482 of the Delaware Agricultural Experiment Station. Contribution No. 317 of the Department of Plant and Soil Sciences. Mention of trade names in this publication does not imply endorsement by the Delaware Agricultural Experiment Station of products named, nor criticism of similar ones not named.  相似文献   

7.
Clones of Plumbago zeylanica were micropropagated using nodal culture. The application of random amplified polymorphic DNA (RAPD) in assessing the genetic integrity of the micropropagated plants was evaluated by polymerase chain reaction. Twenty arbitrary decamers were used to amplify genomic DNA from in vitro and in vivo plant material to assess the genetic fidelity. All RAPD profiles from micro-propagated plants were monomorphic and similar to those of field grown mother plants. No polymorphism was detected within the micropropagated plants.  相似文献   

8.
The soil-borne bacterium Bacillus thuringiensis (Bt) is an important biological agent used against human and plant pests and diseases. Seven Jordanian Bt isolates, which have been analysed for toxicity against important pests, were also differentiated through serotyping. In this study, they were analysed at the molecular level using random amplified polymorphic DNA markers. Five more international strains were incorporated in the analysis. The DNA markers used showed high polymorphism among the isolates tested. However, the data did not align completely with earlier serotyping for most isolates. Therefore, it is recommended to engage several analyses (e.g. biochemical and molecular) when classifying newly surveyed Bt isolates in the world.  相似文献   

9.
Summary Methods for monitoring cell line identification and authentication include species-specific immunofluorescence, isoenzyme phenotyping, chromosome analysis, and DNA fingerprinting. Most previous studies of DNA fingerprinting of cell lines have used restriction fragment length polymorphism analysis. In this study, we examined the utility of an alternative and simpler method of cell line DNA fingerprinting—polymerase chain reaction (PCR) amplification of fragment length polymorphisms. Fourteen human cell lines previously found by other methods to be either related or disparate were subjected to DNA fingerprinting by PCR amplification of selected fragment length polymorphism loci. Cell identification patterns by this method were concordant with those obtained by isoenzyme phenotyping and restriction fragment length polymorphism-DNA fingerprinting, and were reproducible within and between assays on different DNA extracts of the same cell line. High precision was achieved with electrophoretic separation of amplified DNA products on high resolution agarose or polyacrylamide gels, and with fragment length polymorphism (FLP) loci-specific “allelic ladders” to identify individual FLP alleles. Determination of the composite fingerprint of a cell line at six appropriately chosen fragment length polymorphism loci should achieve a minimum discrimination power of 0.999. The ability of PCR-based fragment length polymorphism DNA fingerprinting to precisely and accurately identify the alleles of different human cell lines at multiple polymorphic fragment length polymorphism loci demonstrates the feasibility of developing a cell line DNA fingerprint reference database as a powerful additional tool for future cell line identification and authentication.  相似文献   

10.
Amplification and analysis of human DNA present in mosquito bloodmeals   总被引:1,自引:0,他引:1  
Abstract. DNA fingerprinting should permit the identification of individual human hosts of haematophagous arthropods, providing epidemi-ologically useful information, for example, the biting rates on different people and the impact of insecticide-impregnated bednets.
Investigations reported here demonstrate that it is possible to extract, amplify and fingerprint human DNA from the bloodmeals of individual female Anopheles gambiae mosquitoes kept at 24oC for up to 10–15 h post-ingestion.  相似文献   

11.
Random amplified polymorphic DNAs (RAPD) analysis has been adapted to assess the degree of RAPD polymorphism within the genus Hordeum to determine if this approach can distinguish wild and cultivated species. Nineteen wild and seven cultivated accessions were evaluated using 4 random 10-mer primers. The potential of the RAPD assay was further increased by combining two primers in a single polymerase chain reaction (PCR). RAPD fragments generated by two pairs of arbitrary 10-mer primers discriminated six wild species and one cultivated species by banding profiles. The size of the amplified DNA fragments ranged from 150 to 2300 base pairs. 33 %percent of the fragments were common to both wild and cultivated species; 67% were specific to either wild or cultivated species. The average difference in fragments was less within the species than among the species. By comparing RAPD fingerprints of wild and cultivated barley, markers were identified among the set of amplified DNA fragments which could be used to distinguish wild and cultivated Hordeum species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In our present study assessment of genetic diversity and identification of pigeonpea cultivars has been done by employing 76 random amplified polymorphic DNA (RAPD) primers. Out of 796 amplified products, 587 showed polymorphism (73.7 %) and an average of 10.47 bands were amplified per primer. Cluster analysis based on Jaccard’s similarity coefficient using UPGMA grouped all the cultivars into three clusters. The cluster I consists of 7 cultivars, cluster II of 11 cultivars in 4 sub-clusters and cluster III 4 cultivars. Two cultivars were not included in any cluster. The clustering was strongly supported by high bootstrap values. Furthermore, high values of the average heterozygosity (Hav) and marker index (MI) also indicated the efficiency of RAPD as a marker system.  相似文献   

13.
The random amplified polymorphic DNA (RAPD) technique was used to characterize three species ofPorphyra from the western North Atlantic and adjacent Gulf of Mexico. Twenty 10-mer primers were screened for DNA amplification usingPorphyra template DNA. Nine of these oligonucleotide primers, all (G+C)-rich, were positive or band-producing, but yielded poor or variable band resolution. Subsequent use of the universal 20-mer M 13 primer resulted in both clear band resolution with a minimum of secondary bands and a high degree of reproducibility. Amplification products for DNA from six regional isolates ofPorphyra carolinensis Coll et Cox,P. leucosticta Thuret in Le Jolis andP. rosengurttii Coll et Cox were compared to each other and toBangia atropurpurea (Roth) C. Agardh. Results provide evidence of both genetically hetero- and homogeneous populations. Use of the RAPD method with the M 13 primer yields amplification products which can be used to fingerprint specific genotypes. This procedure could be used to discriminate between hetero- and homokaryotic fusion products from previously characterized donor strains.  相似文献   

14.
Genetic diversity of wine Saccharomyces cerevisiae strains involved in spontaneous fermentations was studied by analysis of mitochondrial DNA restriction patterns. Yeasts were isolated at different stages of fermentations with must from three different white grapevine varieties, Albariño, Godello and Treixadura, which are autochthonous from Galicia. Nineteen different patterns out of a total of 446 strains analysed were identified, but only a few of them appeared at high frequency and therefore were able to lead the fermentation process. Some strains were common to all fermentations; however, most of them were a minority being only found at low frequency for one or two specific grape varieties. The dominant strain was different for each variety except in one case, suggesting that some strains are better adapted to certain must conditions.  相似文献   

15.
Genomic DNA was extracted from 13 samples of Sargassum polycystum and S. siliquosum collected from various localities around Peninsular Malaysia and Singapore by using four different extraction methods. The yields and the suitability of the DNA to be used as template for the polymerase chain reaction (PCR) was compared. DNA samples were subjected to PCR analysis by using random primers. Only DNA samples that were extracted using the CTAB method were successfully amplified by random amplified polymorphic DNA (RAPD)-PCR. Five of 31 random primers (OPA02, OPA03, OPA04, OPA13 and OPM10) tested amplified sequences of DNA from the DNA samples. Reproducible, amplified products were obtained using these primers and showed some potential to be useful in discriminating individual samples within the genus, in determining relationships between species within a genus and in developing individual fingerprints for individual samples.  相似文献   

16.
Summary The Brassica napus genome has been investigated by DNA fingerprinting with six synthetic oligonucleotide probes complementary to simple repetitive sequences, namely (GATA)4, (GACA)4, (GGAT)4, (CA)8, (CT)8 and (GTG)5. While all sequence motifs were found to be present in the B. napus genome, their organization and abundance varied considerably. Among the investigated probes, (GATA)4 revealed the highest level of intraspecific polymorphism and distinguishes not only between cultivars but even between different individuals belonging to the same cultivar. In contrast, (GTG)5, (GACA)4 and (GGAT)4 produced relatively homogeneous fingerprint patterns throughout different cultivars, while hybridization to (CT)8 and (CA)8 resulted in only a few weak bands superimposed on a smear. The isoschizomeric pair Hpa II and Msp I revealed the presence of methylated cytosines in the vicinity of (GATA)m repeats. The applicability of simple repetitive sequence polymorphisms as molecular markers for Brassica species is discussed.  相似文献   

17.
The development and use of RAPD markers for applications in crop improvement has recently generated considerable interest within the plant breeding community. One potential application of RAPDs is their use for tagging simply-inherited (monogenic) pest-resistance genes and enabling more efficient identification and selection of genotypes carrying specific combinations of resistance genes. In this report, we propose and describe the use of heterogeneous inbred populations as sources of near-isogenic lines (NILs) for targeting RAPD markers linked to major pest resistance genes. The development of these NILs for RAPD marker analyses involved a sequence of line and mass selection during successive generations of inbreeding. DNA bulks derived from the NILs were used to identify a RAPD marker (designated OK14620, generated by 5-CCCGCTACAC-3 decamer) that was tightly linked (2.23±1.33 centiMorgans) to an important rust [Uromyces appendiculatus (Pers.) Unger var. appendiculatus] resistance gene (Ur-3) in common bean (Phaseolus vulgaris L.). The efficiency of this approach was demonstrated by a low rate of false-positives identified, the tightness of the linkage identified, and the ability to detect polymorphism between genomic regions that are representative of the same gene pool of common bean. This method of deriving NILs should find application by researchers interested in utilizing marker-assisted selection for one or more major pest resistance genes. The identification of OK14620 should help to facilitate continued use of the Ur-3 resistance source and will now enable marker-assisted pyramiding of three different bean rust resistance sources (two previously tagged) to provide effective and stable resistance to this important pathogen.Research supported in part by the grant DAN 1310-G-SS-6008-00 from the USAID Bean/Cowpea Collaborative Research Support Program, the Michigan Agricultural Experiment Station, and the USDA-ARS. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

18.
Analysis of yeasts derived from natural fermentation in a Tokaj winery   总被引:7,自引:0,他引:7  
The diversity of yeast flora was investigated in a spontaneously fermenting sweet white wine in a Tokaj winery. The non-Saccharomyces yeasts dominating the first phase of fermentation were soon replaced by a heterogeneous Saccharomycespopulation, which then became dominated by Saccharomyces bayanus. Three Saccharomyces sensu stricto strains isolated from various phases of fermentation were tested for genetic stability, optimum growth temperature, tolerance to sulphur dioxide, copper and ethanol as well as for the ability to produce hydrogen sulphide and various secondary metabolites known to affect the organoleptic properties of wines. The analysis of the single-spore cultures derived from spores of dissected asci revealed high stability of electrophoretic karyotypes and various degrees of heterozygosity for mating-types, the fermentation of galactose and the production of metabolic by-products. The production levels of the by-products did not segregate in a 2:2 fashion, suggesting that the synthesis of these compounds is under polygenic control.  相似文献   

19.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   

20.
The random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) was used for the molecular characterisation and identification of Sargassum spp. A total of 17 samples of Sargassum (Sargassaceae, Fucales) was obtained from various localities around Peninsular Malaysia and Singapore. On the basis of morphological characteristics, the samples were tentatively grouped into five species: Sargassum baccularia, S. glaucescens, S. oligocystum, S. polycystum and S. siliquosum. By RAPD-PCR, five of 31 random primers tested generated reproducible amplification products, and polymorphic loci were detected by four of them (OPA02, OPA03, OPA04, OPA13). The RAPD-PCR profiles did not correlate with the morphological grouping into five species and extensive variation was detected between different isolates of the same species. A 450 base pair fragment generated using OPA13 was detected in 12 of 17 samples of Sargassum. This fragment was also present in profiles from Turbinaria (Sargassaceae). This study suggests that RAPD-PCR is useful in discriminating individual samples of the genus Sargassum and in developing fingerprints for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号