首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the feasibility of purifying rat C6 glioma plasma membranes by a phase partitioning approach. The purification procedure involves cell homogenization and fractionation with an aqueous two-phase polymer system followed by selective affinity purification of plasma membranes by a wheat germ agglutinin-coupled polymer system. We demonstrate that the two-phase affinity partitioning technique is a simple and efficient method of isolating cell plasma membranes with high purity and yield. Furthermore, the isolated plasma membranes retain their functional integrity, as shown by the high-affinity insulin-like growth factor-I (IGF-I) binding capacity of IGF-I receptors.  相似文献   

2.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

3.
Aqueous two-phase systems   总被引:6,自引:0,他引:6  
Biphasic systems formed by mixing of two polymers or a polymer and a salt in water can be used for separation of cells, membranes, viruses, proteins, nucleic acids, and other biomolecules. The partitioning between the two phases is dependent on the surface properties and conformation of the materials, and also on the composition of the two-phase system. The mechanism of partitioning is, however, complex and not easily predicted. Aqueous two-phase systems (ATPS) have proven to be a useful tool for analysis of biomolecular and cellular surfaces and their interactions, fractionation of cell populations, product recovery in biotechnology, and so forth. Potential for environmental remediation has also been suggested. Because ATPS are easily scalable and are also able to hold high biomass load in comparison with other separation techniques, the application that has attracted most interest so far has been the large-scale recovery of proteins from crude feedstocks. As chemicals constitute the major cost factor for large-scale systems, use of easily recyclable phase components and the phase systems generated by a single-phase chemical in water are being studied.  相似文献   

4.
Highly purified plasma membranes (PMs) isolated by aqueous two-phase polymer methods from goat sperm undergoing epididymal maturation, have been analyzed for the isoenzymes of cyclic AMP-dependent protein kinase (RC). The mature and the immature spermatozoa showed profound differences in the profile of the isoenzymes of RC solubilized from the isolated PMs with 0.1% Triton X-100. The immature sperm PM consists of only type I RC in contrast to the mature sperm membrane which possesses both the type I and II isoenzymes. The type II kinase represents nearly 30% of the total membrane-bound RC of the mature cells. The analysis of the surface topography of these isoenzymes of the maturing spermatozoa by using diazonium salt of sulfanilic acid as the surface probe shows that the PM-bound RC(s) are oriented primarily on the external surface of these intact cells. The data demonstrate that type II RC is a maturation-specific ecto-kinase as it appears on the sperm surface specifically during the maturation of spermatozoa in the epididymis.  相似文献   

5.
High purity berry plasma membranes (PMs) of Vitis vinifera L. cv. Cabernet Sauvignon were isolated by two-phase partitioning of microsome fractions at different stages of berry ripening. PM proteins resolvable by the detergent cocktail of CHAPS and ASB-14 were separated by two-dimensional electrophoresis. A total of 119 protein spots from pre-véraison berry PMs on 2-D gels detected with silver staining were subjected to MALDI-TOF mass spectrometry analysis. Sixty-two spots were identified as putative PM proteins, with 1-6 predicted transmembrane helices, including true PM proteins such as ATP synthase, ABC transporters, and GTP-binding proteins reported in plants. They were then grouped into eight functional categories, mainly involved in transport, metabolism, signal transduction, and protein synthesis. Another 11 spots were identified as proteins of unknown function. The véraison and post-véraison samples stained 98 and 86 spots on the gels, respectively. During the berry ripening process, total PM protein content gradually decreased. Among all identified proteins, 12 showed significant differences in terms of their relative abundance. Increasing ubiquitin proteolysis and cytoskeleton proteins were observed from pre-véraison to post-véraison. Zeatin O-glucosyltransferase peaked at véraison, while ubiquitin-conjugating enzyme E2-21 was down-regulated at this stage. This proteome research provides the first information on PM protein characterization during the grape berry ripening process.  相似文献   

6.
The large scale asymmetry in surface (poly)peptides of the plasma membrane (PM) of mung bean (Vigna radiata L.) hypocotyl cells was investigated by protease and 1 M KCl treatments of PM vesicles obtained by an aqueous two-phase partition technique. Proteases only slightly reduced the protein content of right-side-out PM vesicles and the treatment with 1 M KCl resulted in the dissociation of only a few peripheral proteins from the outer surface of right-side-out PM vesicles, indicating that few surface peptides including peripheral proteins existed on the outer surface. From experiments of the re-partitioning of endomembrane vesicles removed from surface peptides, it was found that the surface peptide content is a factor determining the partitioning, and the hypothesis that sterols are asymmetrically distributed across higher plant PM was proposed. We speculate that asymmetrical properties between the outer and the inner surfaces of plant PM, especially in partitioning in the two-phase system, derive from the asymmetry of the bulk of surface peptides and PM sterols. The comparatively low hydrophilicity of the outer surface of the PM would be important for the partitioning of right-side-out PM vesicles in the upper phase of the two-phase system.  相似文献   

7.
The large scale asymmetry in surface (poly)peptides of the plasma membrane (PM) of mung bean (Vigna radiata L.) hypocotyl cells was investigated by protease and 1 M KCl treatments of PM vesicles obtained by an aqueous two-phase partition technique. Proteases only slightly reduced the protein content of right-side-out PM vesicles and the treatment with 1 M KCl resulted in the dissociation of only a few peripheral proteins from the outer surface of right-side-out PM vesicles, indicating that few surface peptides including peripheral proteins existed on the outer surface. From experiments of the re-partitioning of endomembrane vesicles removed from surface peptides, it was found that the surface peptide content is a factor determining the partitioning, and the hypothesis that sterols are asymmetrically distributed across higher plant PM was proposed. We speculate that asymmetrical properties between the outer and the inner surfaces of plant PM, especially in partitioning in the two-phase system, derive from the asymmetry of the bulk of surface peptides and PM sterols. The comparatively low hydrophilicity of the outer surface of the PM would be important for the partitioning of right-side-out PM vesicles in the upper phase of the two-phase system.  相似文献   

8.
An improved aqueous two-phase polymer method has been developed for the isolation of sperm plasma membranes by manipulating various parameters that influence markedly the purity as well as yield of the membrane. The method consists of hypotonic shock of intact spermatozoa with 1.25 mM EDTA to dissociate the plasma membrane and dispersion of these cells to a two-phase polymer system consisting of 5.5% 252-Kd dextran and 4.2% 20-Kd polyethylene glycol prior to centrifugation at 9700 X g for 30 min when the two polymer phases are separated; the membrane fraction sediments at the interphase. The resulting membrane fraction was purified further by repeating the two-phase fractionation step. The yield of the membranes was approx. 35-40%, based on the recovery of the membrane-bound marker enzymes alkaline phosphatase and 5'-nucleotidase. The isolated membranes showed a high degree of purity as evidenced by phase contrast and electron microscopic studies and analyses of marker enzymes characteristic of cellular organelles. The yield and purity of the membranes have been found to be markedly dependent on the conditions of the hypotonic shock, obtained as a function of, EDTA concentration and on the molecular sizes of the dextran and polyethylene glycol that constitute the two-phase polymer system, as well as on the centrifugal force used for the sedimentation of the membrane.  相似文献   

9.
When solutions of two different polymers are mixed, phase separation often occurs even at low concentrations of polymers. One polymer usually collects in one phase and the other polymer in the other phase. When water is used as solvent, two aqueous, immiscible, phases are obtained. The same holds for aqueous mixtures of a salt and a polymer. Such aqueous two-phase systems (ATPS) are very useful for separation of high-molecular-weight biomolecules such as proteins and nucleic acids and also for cells, cell organelles, and membrane vesicles. The phase systems can be made highly selective and they are also mild toward biomolecules and cell particles. In this review we describe how ATPS can be used for fragmentation and separation analyses of biological membranes and how this can be used for mapping of the photosynthetic membrane, the thylakoid, of green leaves.  相似文献   

10.
The interaction of molecular characteristics of proteins with the physicochemical properties of PEG-phosphate aqueous two-phase systems has been studied. This has involved characterization of protein molecular weight, charge, and hydrophobicity and study of PEG molecular weight and concentration, phosphate concentration, and pH. System characterization has been conducted in the context of limited stage fractionation procedures for protein recovery from baker's yeast. Results are presented which show that the degree of purification achieved is dependent on macromolecular surface properties rather than system operating conditions. A simple conceptual model of partitioning in PEG-phosphate aqueous two-phase systems is presented which is applicable in the rational design of fractionation procedures and serves to limit the amount of empirical experimentation necessary for the establishment of practical operations.  相似文献   

11.
A new procedure for the fractionation of mucopolysaccharides based upon differences in their partition behavior in aqueous polymer two-phase systems has been devised. Systems containing dextran, poly(ethylene glycol), trimethylamino-poly(ethylene glycol), potassium bromide and sodium phosphate buffer were employed. Countercurrent distributions were performed with a miniature countercurrent distribution device designed especially for use with aqueous polymer two-phase systems. An advantage over the widely used procedures involving precipitation of mucopolysaccharides as their quaternary ammonium detergent complexes is that the countercurrent distribution pattern of a particular mucopolysaccharide is not affected by the simultaneous presence of other mucopolysaccharides. Preliminary distributions of labelled mucopolysaccharides isolated from the cells and culture medium of monolayer cultures of rat tumor cells demonstrate that the procedure is particularly well suited for the fractionation of very minute quantities of mucopolysaccharides.  相似文献   

12.
A new procedure for the fractionation of mucopolysaccharides based upon differences in their partition behavior in aqueous polymer two-phase systems has been devised. Systems containing dextran, poly(ethylene glycol), trimethylamino-poly(ethylene glycol), potassium bromide and sodium phosphate buffer were employed. Countercurrent distributions were performed with a miniature countercurrent distribution device designed especially for use with aqueous polymer two-phase systems. An advantage over the widely used procedures involving precipitation of mucopolysaccharides as their quaternary ammonium detergent complexes is that the countercurrent distribution pattern of a particular mucopolysaccharides is not affected by the simultaneous presence of other mucopolysaccharides. Preliminary distributions of labelled mucopolysaccharides isolated from the cells and culture medium of monolayer cultures of rat tumor cells demonstrate that the procedure is particularly well suited for the fractionation of very minute quantities of mucopolysaccharides.  相似文献   

13.
Cyanobacteria are unique prokaryotes since they in addition to outer and plasma membranes contain the photosynthetic membranes (thylakoids). The plasma membranes of Synechocystis 6803, which can be completely purified by density centrifugation and polymer two-phase partitioning, have been found to be more complex than previously anticipated, i.e. they appear to be essential for assembly of the two photosystems. A proteomic approach for the characterization of cyanobacterial plasma membranes using two-dimensional gel electrophoresis and mass spectrometry analysis revealed a total of 57 different membrane proteins of which 17 are integral membrane spanning proteins. Among the 40 peripheral proteins 20 are located on the periplasmic side of the membrane, while 20 are on the cytoplasmic side. Among the proteins identified are subunits of the two photosystems as well as Vipp1, which has been suggested to be involved in vesicular transport between plasma and thylakoid membranes and is thus relevant to the possibility that plasma membranes are the initial site for photosystem biogenesis. Four subunits of the Pilus complex responsible for cell motility were also identified as well as several subunits of the TolC and TonB transport systems. Several periplasmic and ATP-binding proteins of ATP-binding cassette transporters were also identified as were two subunits of the F(0) membrane part of the ATP synthase.  相似文献   

14.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood.  相似文献   

15.
For various reasons extraction of proteins from plant material is difficult. In particular phenolic compounds and polyanionic cell-wall mucilages render conventional procedures of extraction and purification much more difficult. In this respect, aqueous polymer two-phase systems are presented as a powerful technique in extraction of vanadate-dependent bromoperoxidases from the brown macroalga Laminaria digitata, a seaweed extremely rich in mucilages. Little bromoperoxidase activity was obtained when fresh thallus material was extracted in Tris buffer. Extraction from freeze-dried and powdered material was more efficient but only satisfactory when partitioning in an aqueous polymer two-phase system was employed. Among several two-phase systems tested, one composed of poly(ethylene glycol) (PEG 1550) and potassium carbonate proved most successful (phase system-1). A rapid and efficient extraction procedure was developed with special regard for suitability in large scale processes. Staining for catalytic activity after PAGE revealed a pattern of several bromoperoxidase isoforms. Bromoperoxidases extracted in phase system-1 were fractionated into two groups of isoforms by partitioning in a second system (phase system-2) indicating that isoforms from both groups differ significantly in surface properties. Subsequently, one purification step by hydrophobic interaction chromatography was sufficient to remove residual non-peroxidase proteins as well as remaining polysaccharides from bromoperoxidases of both groups. Thus, consideration of aqueous two-phase systems as a technique for extraction and purification of plant proteins can be recommended, whenever inconveniant amounts of phenolic compounds, mucilages or pigments are present.  相似文献   

16.
The separation of host and recombinant Escherichia coli bacterial cells has been studied using the surface-sensitive technique of partitioning in aqueous two-phase polymer systems. Experiments were designed to probe charge-and hydrophobicity-related property differences of antibiotic-resistant recombinant cells and their antibiotic-sensitive hosts. Differential partitioning was observed in both charge-sensitive and non-charge-sensitive phase systems for three host-recombinant cell systems, but the non-charge-related effects appear to have a greater impact on partitioning behavior. This result suggests that plasmid-encoded products related to antibiotic resistance modify the surface hydrophobicity of the E. coli bacterial cell and that these differences can be exploited for cell separation.  相似文献   

17.
Peritrophic membranes (PMs) are acellular layered structures secreted around ingested materials by the gut epithelium. Most studies on PMs have focused on those of insects and crustaceans due to their potential ability to block the movement of pathogens from ingested materials into the body, and their possible use as unique targets relevant to pest management. While PMs are known to occur in other taxa, their distribution is spotty and little is known about their role in these other species. The gastropod Megathura crenulata produces a true PM, which has a chitinous matrix that makes up nearly half its wet weight. Unlike arthropod PMs, which are released by delamination from the microvilli of their gut cells, the chitinous matrix of the M. crenulata PM is secreted from epithelial cells lining most regions of its gut. Although its mode of synthesis is unique, it may serve the same functions as proposed for other PMs, including regulating diffusion, binding metabolites, restricting protease activity, blocking pathogens, and providing lubrication. In arthropods, numerous proteins with chitin‐binding specificities have been identified, consistent with the proposed functions. Analysis of PMs in M. crenulata showed several integral proteins associated with the membrane, suggesting that the PM in this mollusc may be involved in complex functions like those seen in the arthropods.  相似文献   

18.
Studies on the application of the techniques of counter-current distribution (CCD) in aqueous two-phase systems and multiple sedimentation for the fractionation of metaphase chromosomes are presented. The two-phase systems were composed of aqueous solutions of Dextran 500 and poly(ethylene)glycol 6000 (PEG). It has been found that different groups of chromosomes differ in their distribution between the two phases and that the introduction of PEG with covalently attached positively or negatively charged groups provides a means of steering the distribution of chromosomes. A rough fractionation of chromosomes on the basis of size is possible by the technique of multiple sedimentation and this, in combination with CCD, yields 10 fractions of chromosomes. Partition and CCD in aqueous two-phase system separate chromosomes according to their surface properties and may prove useful for isolation of individual chromosomes in bulk.  相似文献   

19.
An aqueous two-phase polymer method originally developed for the isolation of plasma membrane from mature goat epididymal spermatozoa (Rana, A.P.S. and Majumder, G.C., Prep. Biochem., 17, 261, 1987) has been found to be unsuitable for the maturing spermatozoa derived from caput and corpus epididymides because of significant contamination of the isolated membrane with intact cells. A modified method has been developed by manipulating the centrifugal force (required for membrane sedimentation) for the isolation of maturing sperm plasma membrane of high yield (approximately 55%) and purity as judged by marker enzyme assays and phase contrast and electron microscopic analyses. The method consists of treatment of intact spermatozoa with 1.25 mM EDTA, dispersion of these cells to a two-phase polymer system comprising 5.5% 252-Kd dextran and 4.2% 20-Kd polyethylene glycol compound and subsequent centrifugation at 12,000 X g for 30 min when the two phases separate out and membranes sediment at the interphase. The repeatation of the two-phase fractionation step yielded greater purity of the plasma membrane.  相似文献   

20.
The transmembrane distribution of phospholipids (PLs) in the plasma membrane (PM) of mung bean (Vigna radiata L.) hypocotyl cells was investigated using annexin V-fluorescein isothiocyanate, porcine pancreas phospholipase A(2), and (31)P-nuclear magnetic resonance (NMR) spectroscopy. Phosphatidylserine was not located on the cell surface of mung bean protoplasts. However, phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid were found to be almost symmetrically distributed across right-side-out PM vesicles obtained by aqueous two-phase partitioning by porcine pancreas phospholipase A(2) assay. (31)P-NMR assay showed that the amount of PLs is about equal in the outer and the inner leaflets of the right-side-out PM vesicles. These results suggest that the topography of PM PLs might not contribute to well-known asymmetrical properties of the outer and inner surfaces of higher plant PMs. It is also indicated that inside-out PM vesicles created by Brij 58-treatment do not retain the native PL topography on dithionate reduction of 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled PLs incorporated in the PM vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号