首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have isolated a temperature-sensitive alanyl-tRNA synthetase mutant from hamster BHK21 cells, designated as ts ET12. It has a single nucleotide mutation, converting the 321st amino acid residue, 321Gly, to Arg. The mutation was localized between two RNA-binding domains of alanyl-tRNA synthetase. Thus far, we have isolated two temperature-sensitive aminoacyl-tRNA synthetase mutants from the BHK21 cell line: ts BN250 and ts BN269. They are defective in histidyl- and lysyl-tRNA synthetase respectively. Both mutants rapidly undergo apoptosis at the nonpermissive temperature, 39.5 degrees C. ts ET12 cells, however, did not undergo apoptosis until 48 h after a temperature-shift to 39.5 degrees C, while mutated alanyl-tRNA synthetase of ts ET12 cells was lost within 4 h. Loss of the mutated alanyl-tRNA synthetase was inhibited by a ubiquitin-dependent proteasome inhibitor, MG132, and by a protein-synthesis inhibitor, cycloheximide. Cell-cycle related proteins were also lost in ts ET12 cells at 39.5 degrees C, as shown in ts BN250. In contrast, the mutated aminoacyl-tRNA synthetases of ts BN250 and ts BN269 were stable at 39.5 degrees C. However, the defects of these mutants released EMAPII, an inducer of apoptosis at 39.5 degrees C. No release of EMAPII occurred in ts ET12 cells at 39.5 degrees C, consistent with the delay of apoptosis in these cells.  相似文献   

2.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

3.
The tsBN462 cell line, a temperature-sensitive (ts) mutant isolated from the hamster cell line, BHK21/13, cannot progress into S phase at 39.5 degrees C, following the release from isoleucine deprivation. The mutant cells were transfected with high molecular weight (HMW) DNA from human KB cells, and several human DNA bands were found to be conserved through three cycles of ts+ transformation. Conserved human DNA was isolated from the cosmid library of the secondary ts+ transformant (K-1-1), using 32P-labelled total human DNA as a probe. The isolated human DNA covers about 70 kb of human DNA flanked with hamster DNA, and originates from the human X chromosome. The middle part (56 kb) of the isolated human DNA was conserved through the primary, secondary and tertiary ts+ transformation, without gross rearrangement.  相似文献   

4.
The regulation of polypeptide chain initiation has been investigated in extracts from a number of well-characterized Chinese hamster ovary (CHO) cell mutants containing different temperature-sensitive aminoacyl-tRNA synthetases. These cells exhibit a large decline in the rate of initiation when cultures are shifted from the permissive temperature of 34 degrees C to the non-permissive temperature of 39.5 degrees C. During a brief incubation with [35S]Met-tRNAMetf or [35S]methionine, formation of initiation complexes on native 40S ribosomal subunits and 80S ribosomes is severely impaired in extracts from the mutant cell lines exposed to 39.5 degrees C. Wild-type cells exposed to 39.5 degrees C do not show any inhibition of protein synthesis or initiation complex formation. Inhibition of formation of 40S initiation complexes in the extracts from mutant cells, incubated at the non-permissive temperature, is shown to be independent of possible changes in mRNA binding or the rate of polypeptide chain elongation and is not due to any decrease in the total amount of initiation factor eIF-2 present. However, assays of eIF-2 X GTP X Met-tRNAMetf ternary complex formation in postribosomal supernatants from the temperature-sensitive mutants reveal a marked defect in the activity of eIF-2 after exposure of the cells to 39.5 degrees C and addition of exogenous eIF-2 to cell-free protein-synthesizing systems from cells incubated at 34 degrees C and 39.5 degrees C eliminates the difference in activity between them. The activity of the initiation factor itself is not directly temperature-sensitive in the mutant CHO cells. The results suggest that the activity of aminoacyl-tRNA synthetases can affect the ability of eIF-2 to bind Met-tRNAMetf and form 40S initiation complexes in intact cells, indicating a regulatory link between polypeptide chain elongation and chain initiation.  相似文献   

5.
ts11 is a temperature-sensitive (ts) mutant isolated from the BHK-21 Syrian hamster cell line that is blocked in the G1 phase of the cell cycle at the non-permissive temperature (39.5 degrees C). We previously showed that the human gene encoding asparagine synthetase (AS) transformed ts11 cells to a ts+ phenotype and that ts11 cells were auxotrophic for asparagine at 39.5 degrees C. We show here that ts11 cells exhibit a ts phenotype for AS activity, and that the ts11 AS was much heat-labile than the wt enzyme. We have isolated AS cDNAs from wt BHK and ts11 cells and found that wt, but not ts11 AS cDNAs were capable of transformation. The deduced amino acid sequence of Syrian hamster AS showed 95% identity to the human protein as well as the same number of residues. The inability of the ts11 AS cDNAs to transform was due to a single base change, a C to T transition, that would result in the substitution of leucine with phenylalanine at a residue located in the C-terminal fourth of the enzyme. Thus the ts11 mutation identifies a mutated, thermolabile AS.  相似文献   

6.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

7.
8.
9.
A radiation suicide procedure was used to isolate cells with either constitutive or temperature-sensitive (ts) defects in the receptor-mediated endocytosis of low density lipoprotein (LDL). Mutagen-treated Chinese hamster ovary cells maintained at 34 degrees C (permissive temperature) were shifted to 39.5 degrees C (nonpermissive temperature) for 14-26 h and incubated at 39.5 degrees C for an additional 6-8 h with [3H]cholesteryl linoleate LDL. Wild-type cells internalized this lipoprotein via LDL receptors and accumulated [3H]cholesteryl linoleate (1.5-2 dpm/cell). Radiolysis during 80 days of frozen storage killed most of these cells (radiation suicide). Receptor-deficient cells were identified by screening the surviving cells for their inability to internalize and accumulate 125I-LDL using a replica plating assay. From 3.6 x 10(7) tritium-labeled cells, two clones fell into previously defined constitutive and ts complementation groups (ldlA and ldlG, respectively). Another constitutive and two other ts mutants defined two new complementation groups, ldlI (constitutive) and ldlH (ts). This increases to nine the current number of recessive, LDL receptor-deficient, Chinese hamster ovary complementation groups. All of the mutants with ts defects in LDL endocytosis exhibited ts conditional-lethal phenotypes. At the nonpermissive temperature, the rates of loss of LDL receptor activity (t 1/2 = 10-14 h) were significantly faster than the rates of loss of protein synthesis (t 1/2 greater than 24 h), suggesting that the temperature sensitivity of receptor activity was not simply due to the metabolic collapse of dying cells. Detailed analysis of these new classes of mutants should help define gene products and functions required for LDL receptor activity.  相似文献   

10.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

11.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

12.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

13.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

14.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

15.
We have constructed interspecific somatic cell hybrids between a temperature-sensitive (ts) mutant cell line of mouse FM3A cells, ts85, that has a heat-labile ubiquitin-activating enzyme (E1) and a human diploid fibroblast cell line, IMR-90. A hybrid clone that could grow stably at a nonpermissive temperature (39 degrees C) was obtained. Segregation of the hybrid cells at a permissive temperature (33 degrees C) gave rise to temperature-sensitive clones. The electrophoresis of extracted histones and karyotype analysis of the segregants revealed a close correlation of the ability to grow at 39 degrees C, the presence of uH2A (ubiquitin-H2A semihistone) at 39 degrees C, and the presence of the human X chromosome. One of the hybrid clones that could grow at the nonpermissive temperature contained the X chromosome as the only human chromosome. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of affinity-purified E1 showed that this hybrid clone contained both human and mouse type E1. Thus we conclude that the functional gene for human E1 is located on the X chromosome.  相似文献   

16.
Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39 degrees C. The incidence of such revertants was approximately 2 X 10(-4) per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39 degrees C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied: the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind III restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized. We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.  相似文献   

17.
When cultures of the temperature-sensitive Chinese hamster ovary cell mutant tsH1 are shifted from 34 degrees C (permissive temperature) to 39.5 degrees C (nonpermissive temperature), protein synthesis is inhibited by more than 80%. This is due principally to a block in activity of polypeptide chain initiation factor eIF-2. In this paper we show that there is impairment of the ability of the guanine nucleotide exchange factor (GEF) to displace GDP from eIF-2 X GDP complexes in extracts from cells incubated at the nonpermissive temperature. Addition of GEF or of high concentrations of eIF-2 stimulates protein synthesis to the level observed in control cell extracts, suggesting that GEF is rate-limiting for eIF-2 activity and overall protein synthesis at the nonpermissive temperature. Analysis of eIF-2 by two-dimensional gel electrophoresis and immunoblotting reveals an increase in the proportion of the alpha subunit in the phosphorylated form from 5.5 +/- 2.4% to 17.2 +/- 3.9% on shifting tsH1 cells from 34 to 39.5 degrees C. No such effect is seen in wild-type cells, which do not exhibit temperature-sensitive protein synthetic activity. Since the primary lesion in tsH1 cells is in their leucyl-tRNA synthetase, these results suggest a role for eIF-2 phosphorylation and GEF activity in coupling the rate of polypeptide chain initiation to the activity of the chain elongation machinery.  相似文献   

18.
tsJT60, a temperature-sensitive (ts) G0-mutant cell line from a Fischer rat, grows normally in the exponential growth phase at 34 degrees C and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS), from the G0 phase they reenter the S phase at 34 degrees C but not at 39.5 degrees C. The ts-block was bypassed when G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus epidermal growth factor (EGF). The presence of EGF for the first 6 h after serum stimulation caused tsJT60 cells to enter the S phase in the presence of FBS at 39.5 degrees C. When EGF was added 6 h after serum stimulation, entrance into the S phase was delayed by about 6 h. The sequential presence of two growth factors, EGF without FBS for 6 h then FBS without EGF, or the reversed sequence, failed to initiate DNA synthesis at 39.5 degrees C. The binding of EGF was not temperature sensitive. The amounts of RNA and protein present doubled after stimulation with both FBS and EGF at 39.5 degrees C. These and other findings suggest that EGF bypasses only some specific event in the entire prereplicative process that operates operating in serum-stimulated cells at 39.5 degrees C.  相似文献   

19.
Studies were done to characterize a DNA-negative temperature-sensitive (ts) mutant of human adenovirus type 2, H2 ts111. The temperature-sensitive defect, which was reversible on shift-down in the absence of protein synthesis, was expressed as early as 2 h postinfection, and the results of density-labeling experiments are in agreement with at least a DNA replication initiation block. On shift-up, after allowing viral DNA synthesis at permissive temperatures, the newly synthesized viral DNA and the mature viral DNA were cleaved into fragments which sedimented as a broad peak with a mean coefficient of 10-12S. This cleavage was more marked in the presence of hydroxyurea as the DNA synthesis inhibitor. Parental DNA in infected cells was degraded to a much lesser extent regardless of the incubation temperature. In contrast, the parental DNA was strongly degraded when early gene expression was permitted at 33 degrees C before shift-up to 39.5 degrees C. Furthermore, cellular DNA was also degraded at 39.5 degrees C in ts111-infected cells, the rate of cleavage being related to the multiplicity of infection. This cleavage effect, which did not seem to be related to penton base-associated endonuclease activity, was also enhanced when early gene expression was allowed at 33 degrees C before shift-up. The ts111 defect, which was related to an initiation block and endonucleolytic cleavage of viral and cellular DNA, seemed to correspond to a single mutation. The implication of the ts111 gene product in protection of viral and cellular DNA by way of a DNase-inhibitory function is discussed.  相似文献   

20.
We report here the cloning of a human cell cycle gene capable of complementing a temperature-sensitive (ts) S-phase cell cycle mutation in a Chinese hamster cell line. Cloning was performed as follows. A human genomic library in phage lambda containing 600,000 phages was screened with labeled cDNA synthesized from an mRNA fraction enriched for the specific cell cycle gene message. Plaques containing DNA inserts which hybridized to the cDNA were picked, and their DNAs were assayed for transient complementation in DNA transformation experiments. The transient complementation assay we developed is suitable for most cell cycle genes and indeed for many genes whose products are required for cell proliferation. Of 845 phages screened, 1 contained an insert active in transient complementation of the ts cell cycle mutation. Introduction of this phage into the ts cell cycle mutant also gave rise to stable transformants which grew normally at the restrictive temperature for the ts mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号