首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony.  相似文献   

2.
Divergence in sexual signals may drive reproductive isolation between lineages, but behavioural barriers can weaken in contact zones. Here, we investigate the role of song as a behavioural and genetic barrier in a contact zone between two subspecies of white‐crowned sparrows (Zonotrichia leucophrys). We employed a reduced genomic data set to assess population structure and infer the history underlying divergence, gene flow and hybridization. We also measured divergence in song and tested behavioural responses to song using playback experiments within and outside the contact zone. We found that the subspecies form distinct genetic clusters, and demographic inference supported a model of secondary contact. Song phenotype, particularly length of the first note (a whistle), was a significant predictor of genetic subspecies identity and genetic distance along the hybrid zone, suggesting a close link between song and genetic divergence in this system. Individuals from both parental and admixed localities responded significantly more strongly to their own song than to the other subspecies song, supporting song as a behavioural barrier. Putative parental and admixed individuals were not significantly different in their strength of discrimination between own and other songs; however, individuals from admixed localities tended to discriminate less strongly, and this difference in discrimination strength was explained by song dissimilarity as well as genetic distance. Therefore, we find that song acts as a reproductive isolating mechanism that is potentially weakening in a contact zone between the subspecies. Our findings also support the hypothesis that intraspecific song variation can reduce gene flow between populations.  相似文献   

3.
Complex recognition systems underlie the social organization of many organisms. In social insects the acceptance of other individuals as nestmates can involve a variety of different cues, but the relative importance of these cues can change in relation to the fitness costs of accepting or rejecting other individuals. In this study we investigate the mechanisms that underlie recognition behaviour in Argentine ants (Linepithema humile). Introduced populations of Argentine ants are characterized by a social structure known as unicoloniality where intraspecific aggression is absent over large distances resulting in the formation of expansive supercolonies. Recent research has identified sites where multiple, mutually aggressive supercolonies co-occur allowing an examination of Argentine ant behaviour at territorial boundaries. We found that workers from different supercolonies always interact aggressively with one another, but that neighbours from different colonies (i.e., workers from nests located in the immediate vicinity of territory borders) consistently exhibited higher levels of aggression compared to those displayed by non-neighbours from different colonies (i.e., workers from nests located far enough away from a territory border so that interactions are unlikely). This difference in the level of aggression displayed between neighbours and between non-neighbours from different supercolonies cannot be explained by differences in relatedness or genetic similarity. Instead our findings suggest that direct contact between mutually antagonistic colonies is sufficient to elevate aggression. A laboratory experiment in which we manipulated the extent to which colonies with no prior history of contact could interact with one another, revealed that aggression increased after colonies were permitted to interact, but dropped after connections between colonies were severed. Moreover, the mere presence of an aggressive supercolony was sufficient to elicit elevated aggression. Overall these patterns are opposite to the “dear enemy” phenomenon and could be the result of the intense territorial aggression exhibited by established supercolonies of this species. Received 8 January 2007; revised 27 March 2007; accepted 28 March 2007.  相似文献   

4.
Reduced genetic diversity through inbreeding can negatively affect pathogen resistance. This relationship becomes more complicated in social species, such as social insects, since the chance of disease transmission increases with the frequency of interactions among individuals. However, social insects may benefit from social immunity, whereby individual physiological defenses may be bolstered by collective‐level immune responses, such as grooming or sharing of antimicrobial substance through trophallaxis. We set out to determine whether differences in genetic diversity between colonies of the subterranean termite, Reticulitermes flavipes, accounts for colony survival against pathogens. We sampled colonies throughout the United States (Texas, North Carolina, Maryland, and Massachusetts) and determined the level of inbreeding of each colony. To assess whether genetically diverse colonies were better able to survive exposure to diverse pathogens, we challenged groups of termite workers with two strains of a pathogenic fungus, one local strain present in the soil surrounding sampled colonies and another naïve strain, collected outside the range of this species. We found natural variation in the level of inbreeding between colonies, but this variation did not explain differences in susceptibility to either pathogen. Although the naïve strain was found to be more hazardous than the local strain, colony resistance was correlated between two strains, meaning that colonies had either relatively high or low susceptibility to both strains regardless of their inbreeding coefficient. Overall, our findings may reflect differential virulence between the strains, immune priming of the colonies via prior exposure to the local strain, or a coevolved resistance toward this strain. They also suggest that colony survival may rely more upon additional factors, such as different behavioral response thresholds or the influence of a specific genetic background, rather than the overall genetic diversity of the colony.  相似文献   

5.
The genetic structure of populations can be both a cause and a consequence of ecological interactions. For parasites, genetic structure may be a consequence of preferences for host species or of mating behaviour. Conversely, genetic structure can influence where conspecific interactions among parasites lay on a spectrum from cooperation to conflict. We used microsatellite loci to characterize the genetic structure of a population of the socially parasitic dulotic (aka “slave‐making”) ant (Polyergus mexicanus), which is known for its host‐specificity and conspecific aggression. First, we assessed whether the pattern of host species use by the parasite has influenced parasite population structure. We found that host species use was correlated with subpopulation structure, but this correlation was imperfect: some subpopulations used one host species nearly exclusively, while others used several. Second, we examined the viscosity of the parasite population by measuring the relatedness of pairs of neighbouring parasitic ant colonies at varying distances from each other. Although natural history observations of local dispersal by queens suggested the potential for viscosity, there was no strong correlation between relatedness and distance between colonies. However, 35% of colonies had a closely related neighbouring colony, indicating that kinship could potentially affect the nature of some interactions between colonies of this social parasite. Our findings confirm that ecological forces like host species selection can shape the genetic structure of parasite populations, and that such genetic structure has the potential to influence parasite‐parasite interactions in social parasites via inclusive fitness.  相似文献   

6.
Social behaviour of group-living animals is often influenced by the relatedness of individuals, thus understanding the genetic structure of groups is important for the interpretation of costs and benefits of social interactions. In this study, we investigated genetic relatedness in feeding aggregations of free-living house sparrows ( Passer domesticus ) during the nonbreeding season. This species is a frequent model system for studies of social behaviour (e.g. aggression, social foraging), but we lack adequate information on the kin structure of sparrow flocks. During two winters, we ringed and observed sparrows at feeding stations, and used resightings to identify stable flock-members and to calculate association indices between birds. We genotyped the birds using seven highly polymorphic microsatellite loci, and estimated pairwise relatedness coefficients and relatedness categories (close kin vs. unrelated) by maximum likelihood method. We found that most birds were unrelated to each other in the flocks (mean ± SE relatedness coefficient: 0.06 ± 0.002), although most individuals had at least a few close relatives in their home flock (14.3 ± 0.6% of flock-mates). Pairwise association between individuals was not significantly related to their genetic relatedness. Furthermore, there was no difference between within-flock vs. between-flock relatedness, and birds had similar proportions of close kin within and outside their home flock. Finally, relatedness among members of different flocks was unrelated to the distance between their flocks. Thus, sparrow flocks were not characterized by association of relatives, nevertheless the presence of some close kin may provide opportunity for kin-biased behaviours to evolve.  相似文献   

7.
Previous studies have indicated that the common European pipistrelle bat ( Pipistrellus pipistrellus ) comprises two cryptic species, P. pipistrellus and Pipistrellus pygmaeus , which differ in echolocation call frequency and mitochondrial DNA sequence. However, levels of divergence based on nuclear markers have not been examined, and hence the potential for male-mediated gene flow between the species cannot be discounted. Moreover, little is known about population structure and migration patterns in either species. Here, we describe the use of microsatellites to investigate nuclear DNA differentiation between, and the pattern of population genetic structure within, the two cryptic pipistrelle species. In total, 1300 individuals from 82 maternity colonies were sampled across the British Isles and Continental Europe. We show, using multivariate analyses, that colonies of the same species are generally genetically more similar to each other than to those from the other species regardless of geographical location. Our findings support the hypothesis that the species are reproductively isolated. Significant patterns of genetic isolation by distance were identified in both species, indicating that mating may occur before any long-distance autumnal migration. The presence of a sea channel does not confer higher levels of genetic differentiation among colonies over and above distance alone in either species. Differences in genetic population structure were identified between the species, with P. pipistrellus showing a wider range of levels of genetic differentiation among colonies and a stronger relationship between genetic and geographical distance than P. pygmaeus . Differences in dispersal, mating behaviour, colony size and/or postglacial colonization patterns could contribute to the differences observed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 539–550.  相似文献   

8.
Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.  相似文献   

9.
Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects – a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker’s hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker’s hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.  相似文献   

10.
Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony''s speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.  相似文献   

11.
For over a century, inbred mice have been used in many areas of genetics research to gain insight into the genetic variation underlying traits of interest. The generalizability of any genetic research study in inbred mice is dependent upon all individual mice being genetically identical, which in turn is dependent on the breeding designs of companies that supply inbred mice to researchers. Here, we compare whole-genome sequences from individuals of four commonly used inbred strains that were procured from either the colony nucleus or from a production colony (which can be as many as ten generations removed from the nucleus) of a large commercial breeder, in order to investigate the extent and nature of genetic variation within and between individuals. We found that individuals within strains are not isogenic, and there are differences in the levels of genetic variation that are explained by differences in the genetic distance from the colony nucleus. In addition, we employ a novel approach to mutation rate estimation based on the observed genetic variation and the expected site frequency spectrum at equilibrium, given a fully inbred breeding design. We find that it provides a reasonable per nucleotide mutation rate estimate when mice come from the colony nucleus (~7.9 × 10−9 in C3H/HeN), but substantially inflated estimates when mice come from production colonies.Subject terms: Evolutionary genetics, Evolutionary biology, Inbreeding, Genetic variation, Mutation  相似文献   

12.
两个封闭群SPF级昆明小鼠遗传背景调查   总被引:1,自引:0,他引:1  
目的:比较两个封闭群SPF级昆明( KM)小鼠的遗传差异,调查引进的SPF级KM小鼠封闭繁殖6年后,其遗传构成是否发生变化。方法应用微卫星DNA标记方法对18个位点在两个群体中的遗传差异进行分析,主要包括观察等位基因数( Na)、有效等位基因数( Ne)、观察杂合度( Ho)、期望杂合度( He)、多态信息含量(PIC )、Shan-non信息指数、遗传分化系数( F st)、遗传距离等遗传参数。结果两个封闭群SPF 级KM小鼠在18个微卫星位点共发现67个等位基因,Na为2~8个,平均3.7222个;Ne为1.9459~6.5442,平均2.7966个;Ho为0.4225~1.0000,平均0.8823;He为0.4892~0.8527,平均0.6162;Shannon信息指数0.6792~1.9526,平均1.0598;PIC为0.3680~0.8301,平均0.5317;Fst平均值为0.0159,表明群体间的遗传差异仅1.59%,二者间的遗传距离(DA)为0.0499。结论两个封闭群SPF级KM小鼠遗传结构相似度极高,它们与原引进群体的分化差异极小。  相似文献   

13.
Seabirds are considered highly mobile, able to fly great distances with few apparent barriers to dispersal. However, it is often the case that seabird populations exhibit strong population genetic structure despite their potential vagility. Here we show that Galapagos Nazca booby (Sula granti) populations are substantially differentiated, even within the small geographic scale of this archipelago. On the other hand, Galapagos great frigatebird (Fregata minor) populations do not show any genetic structure. We characterized the genetic differentiation by sampling five colonies of both species in the Galapagos archipelago and analyzing eight microsatellite loci and three mitochondrial genes. Using an F‐statistic approach on the multilocus data, we found significant differentiation between nearly all island pairs of Nazca booby populations and a Bayesian clustering analysis provided support for three distinct genetic clusters. Mitochondrial DNA showed less differentiation of Nazca booby colonies; only Nazca boobies from the island of Darwin were significantly differentiated from individuals throughout the rest of the archipelago. Great frigatebird populations showed little to no evidence for genetic differentiation at the same scale. Only two island pairs (Darwin – Wolf, N. Seymour – Wolf) were significantly differentiated using the multilocus data, and only two island pairs had statistically significant φST values (N. Seymour – Darwin, N. Seymour – Wolf) according to the mitochondrial data. There was no significant pattern of isolation by distance for either species calculated using both markers. Seven of the ten Nazca booby migration rates calculated between island pairs were in the south or southeast to north or northwest direction. The population differentiation found among Galapagos Nazca booby colonies, but not great frigatebird colonies, is most likely due to differences in natal and breeding philopatry.  相似文献   

14.
Multilocus DNA fingerprinting, aggression tests, and morphometry were compared to evaluate their potential for the delineation of colonies of Coptotermes formosanus Shiraki (Isoptera; Rhinotermitidae) in Hawaii. DNA fingerprinting segregates the termites from all collection sites and allows the assignment of all individuals to their original collection site. The genetic similarity of termites from different collection sites approaches the population's genetic background similarity, consequently collection sites represent independent colonies. Aggression between colonies is comparatively low and does not provide reliable colony delineation. Morphometry allows a 79% classification rate of termites to their colony of origin. No correlation among genetic similarities, aggression levels, and morphometric distances is found. Of the three investigated methods, we conclude that the genetic approach is the most useful tool for colony delineation in C. formosanus.  相似文献   

15.
Microsatellite markers have been increasingly used in genetic studies on fishery species because of their high applicability in selective breeding programs.Here we reported the development of microsatellite markers and their utilization in mud carp(Cirrhina molitorella).An (CA)15 enriched library has been constructed for mud carp,using the magnetic beads enrichment procedure.Sequence analysis of 60randomly picked positive colonies indicate that 56 (93.3%) of the colonies contain microsatellites.Microsatellite polymorphism was as-sessed using 10 mud carp individuals,and 12 microsatellite loci turned out to be polymorphic.We utilized these loci to study the genetic diversity of a wild population (WM) and a cultured population (CM) of the mud carp.A total of 109 alleles were detected with an average of 9.08 alleles per locus.The mean value of the observed heterozygosity of WM and CM was 0.6361 and 0.6417,respectively,and sig-nificant decrease of genetic diversity in CM was not observed.The genetic distance between the two populations was 0.1546 and the value of Gsr was 0.0473.This showed that there existed a slight genetic differentiation between WM and CM.  相似文献   

16.
Although heterogeneity in contact rate, physiology, and behavioral response to infection have all been empirically demonstrated in host–pathogen systems, little is known about how interactions between individual variation in behavior and physiology scale‐up to affect pathogen transmission at a population level. The objective of this study is to evaluate how covariation between the behavioral and physiological components of transmission might affect epidemic outcomes in host populations. We tested the consequences of contact rate covarying with susceptibility, infectiousness, and infection status using an individual‐based, dynamic network model where individuals initiate and terminate contacts with conspecifics based on their behavioral predispositions and their infection status. Our results suggest that both heterogeneity in physiology and subsequent covariation of physiology with contact rate could powerfully influence epidemic dynamics. Overall, we found that 1) individual variability in susceptibility and infectiousness can reduce the expected maximum prevalence and increase epidemic variability; 2) when contact rate and susceptibility or infectiousness negatively covary, it takes substantially longer for epidemics to spread throughout the population, and rates of epidemic spread remained suppressed even for highly transmissible pathogens; and 3) reductions in contact rate resulting from infection‐induced behavioral changes can prevent the pathogen from reaching most of the population. These effects were strongest for theoretical pathogens with lower transmissibility and for populations where the observed variation in contact rate was higher, suggesting that such heterogeneity may be most important for less infectious, more chronic diseases in wildlife. Understanding when and how variability in pathogen transmission should be modelled is a crucial next step for disease ecology.  相似文献   

17.
Honeybees have an age-based division of labour that is influenced by genetic variability for the tendency to perform specific tasks. Individuals in a honeybee colony comprise diverse genotypes and their interactions can influence task allocation. Colonies from an African race (Africanized honeybees, AHB, Apis mellifera scutellata Ruttner) usually produce a much stronger defensive response than do European races of honeybees (EHB), and these races may differ in how individuals are allocated to the tasks of guarding and stinging. We observed guarding behaviour in colony environments that varied in proportions of genotypes (AHB, EHB) and population size. In large colonies, AHB showed much greater guarding persistence (number of days guarding) than EHB; hybrids were intermediate. In another series of experiments, three families each of AHB and EHB were cofostered in colonies with different AHB: EHB ratios, then tested in large and small colonies. In colonies of both sizes, colony environment interacted with both famly and type (AHB or EHB) for propensity to guard. Individuals of both types guarded more persistently in large colonies, but family and type both interacted with environment. EHB were more likely to initiate guarding bouts in low-AHB colonies, but persistence did not change with environment. AHB were insensitive to effects of environment for the tendency to initiate guarding behaviour, but were more persistent in high-AHB environments. EHB and AHB may differ in how they allocate individuals to guarding. The positive reinforcement of behaviour that occurs in high-defensive environments and in large populations could cause a stronger stinging response through alarm pheromone recruitment. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

18.
The efficiency of social insect colonies critically depends on their ability to efficiently allocate workers to the various tasks which need to be performed. While numerous models have investigated the mechanisms allowing an efficient colony response to external changes in the environment and internal perturbations, little attention has been devoted to the genetic architecture underlying task specialization. We used artificial evolution to compare the performances of three simple genetic architectures underlying within-colony variation in response thresholds of workers to five tasks. In the 'deterministic mapping' system, the thresholds of individuals for each of the five tasks is strictly genetically determined. In the second genetic architecture ('probabilistic mapping'), the genes only influence the probability of engaging in one of the tasks. Finally, in the 'dynamic mapping' system, the propensity of workers to engage in one of the five tasks depends not only on their own genotype, but also on the behavioural phenotypes of other colony members. We found that the deterministic mapping system performed well only when colonies consisted of unrelated individuals and were not subjected to perturbations in task allocation. The probabilistic mapping system performed well for colonies of related and unrelated individuals when there were no perturbations. Finally, the dynamic mapping system performed well under all conditions and was much more efficient than the two other mapping systems when there were perturbations. Overall, our simulations reveal that the type of mapping between genotype and individual behaviour greatly influences the dynamics of task specialization and colony productivity. Our simulations also reveal complex interactions between the mode of mapping, level of within-colony relatedness and risk of colony perturbations.  相似文献   

19.
Variation in body size among subpopulations of the same species may reflect phenotypic or genetic responses to environmental gradients or geographical distance. Here, we examine geographical variation in the body size of the dovekie (Alle alle), the most numerous high-Arctic seabird. Locations of dovekie breeding sites are largely restricted to the high-Arctic zone of the Atlantic. We compared wing length, head-bill length, body mass, and a body size index of 1,076 birds from nine main colonies spanning a large part of the breeding range of the species. Results suggest morphological variation across the studied populations of dovekies, with a longitudinal increase in body size from west to east. The smallest birds breed in the western part of the population (Greenland and Jan Mayen), middle-sized individuals on Svalbard, and the largest birds (A. a. polaris subspecies) breed in the eastern part of the studied area, Franz Josef Land. Environmental (air temperature, wind speed, and sea surface temperature) and geographical (intercolonial distance) parameters were analyzed to explore potential mechanisms driving differences in body size. The body size of birds increased significantly with decreasing air temperature, but only when the two subspecies were considered. We did not find a relationship between sea surface temperature and body size of birds. Also, no close relationship was revealed between birds’ body size and the geographical distance between colonies. Whether the body size variation of dovekie can be explained by phenotypic plasticity in response to environmental conditions in wintering areas or a pattern of distance-independent gene flow between colonies remains to be explored.  相似文献   

20.
The Humboldt penguin, once common throughout its range, is today listed as Vulnerable by the IUCN. Mark-recapture and telemetry studies indicate that adult Humboldt penguins are sedentary, suggesting strong genetic differentiation between colonies. We developed genotypes for 336 individuals at 12 microsatellite loci sampled at four different localities spanning the entire range of this species. Results show that long-term gene flow has occurred but appears to be affected by geographic distance as pairwise F ST comparisons involving the colony at Punta San Juan (Peru) and the two colonies at Algarrobo (central Chile) and Puñihuil (southern Chile) are significant. Bayesian estimates of recent migration rates indicate substantial dispersal among all colonies. Despite the dramatic decline in numbers, we did not observe a bottleneck in any population. Furthermore, we did not detect a founder effect in the recently discovered colony at Puñihuil. As our indirect estimates signal strong gene flow between populations, we suggest that Humboldt penguin colonies need to be managed as a metapopulation rather than as discrete management units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号