首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   

2.
Summary Abscisic acid (ABA) at a concentration of 100 m reduced the mean stomatal aperture on isolated epidermis of Commelina communis from 9.5 to 3.1 m. This closure resulted from a fall in osmotic pressure of the guard cells from 14.1 to 9.8 bars; the osmotic pressure of the subsidiary cells did not change significantly. Histochemical tests showed that the potassium concentration in guard cells was reduced by ABA-treatment, while the starch content of the chloroplasts increased. ABA was found to exert a significant effect on Rb86 uptake into leaf discs, but this was relatively small in magnitude. It is concluded that ABA has a greater effect on ion uptake into guard cells than into the leaf tissues as a whole.Recent hypotheses of the stomatal mechanism are discussed in relation to these new observations, and the rejection by some writers of any major role for starch hydrolysis is challenged. Evidence from several sources suggests that starch disappearance occurs simultaneously with K+ entry into guard cells. Breakdown of starch may lead to formation of organic anions, with which K+ uptake may be associated. In this case starch breakdown would contribute as much to the increased osmotic pressure as does K+ uptake.  相似文献   

3.
4.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

5.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

6.
Maize plants (Zea mays L. hybrid INRA 508) were placed under controlled conditions of light and CO2 partial pressure. The K+, Cl? and P contents were then determined by X-ray microanalysis in the bulbous end of guard cells and in the center of subsidiary cells. The results were interpreted in connection with the stomatal conductance at the time of sampling. In normal air, the K+ and Cl? contents in guard cells only rose from a light threshold of about 300 μmol m?2 s?1 at which stomata were already largely open. At 600 μmol m?2 s?1, the K+ and Cl? levels in guard cells attained values that were 3- and 8-fold greater, respectively, than the values observed in darkness. The K+ and Cl? contents in the subsidiary cells remained quite constant irrespective of the light conditions. CO2-free air in darkness induced a significant K+ influx towards guard and subsidiary cells. Under light and in CO2-free air, the K+ and Cl? contents dramatically increased in the guard cells, but slightly decreased in the subsidiary cells. Thus, when subjected to strong light in CO2-free air, the K+ and Cl? contents in the subsidiary cells were approximately equal to those measured in normal air conditions. In the guard cells, stomatal opening was associated with a marked shift of the Cl?/K+ ratio – from 0.3 for closed stomata to ca 1 for fully open stomata. This could imply a slow change in the nature of the principal counterion accompanying K+ during stomatal opening. The content of P in guard cells appeared, in contrast to that of K+ and Cl?, to be practically independent of stomatal aperture.  相似文献   

7.
Early ABA Signaling Events in Guard Cells   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.  相似文献   

8.
Syringomycin, a bacterial phytotoxin, closes stomata   总被引:3,自引:1,他引:2       下载免费PDF全文
Mott KA  Takemoto JY 《Plant physiology》1989,90(4):1435-1439
The effects of the bacterial phytotoxin, syringomycin, on stomata were investigated using detached leaves of Xanthium strumarium and isolated epidermes of Vicia faba. Syringomycin is known to cause K+ efflux in fungal and higher plant cells. Doses of syringomycin as low as 0.3 unit per square centimeter (about 0.88 pmole per square centimeter) resulted in measurable stomatal closure when applied through the transpiration stream of detached leaves; higher doses produced larger reductions in stomatal conductance. Stomatal apertures of isolated epidermes were also reduced by low concentrations (3.2 units per milliliter; 10−8 molar) of syringomycin. The effects of syringomycin were similar to those of ABA. Both compounds closed stomata at a similar rate and at similar concentrations. In addition, neither compound significantly affected the relationship between photosynthesis and intercellular CO2 based on data taken after stomatal conductance had stabilized following the treatment. It is possible that syringomycin and ABA activate the same K+ export system in guard cells, and syringomycin may be a valuable tool for studying the molecular basis of ABA effects on guard cells.  相似文献   

9.
Abscisic acid (ABA)-induced increase in stomatal diffusive resistance (SDR) in excised leaves of bean (Phaseolus vulgaris L. cv Pencil Pod) and maize (Zea mays L. cv Golden Bantam) is inhibited by low concentrations of trans-cinnamic acid (TCA) (1 micromolar) and p-coumaric acid (PCA) (10 micromolar) when given together with ABA (10 micromolar) in the transpiration stream through the cut end of the petiole or leaf blade. A concentration effect is observed both in the ABA action and its reversal by phenolic acids. Leaves having attained a high diffusive resistance in ABA solution recover rapidly when transferred to water. ABA (10 micromolar) induced closure of the stomata in onion, Allium cepa L. and Vicia faba epidermal peels. This is associated with loss of K+ from guard cells. In the presence of TCA (10 micromolar) and PCA (10 micromolar) K+ is retained in the guard cells with open stomata. The dark closure of stomata is also inhibited by TCA and PCA. It is suggested that these phenolic acids may inhibit the ABA effect by competing with or acting on some ABA-specific site, probably located on the plasma membrane, regulating flux of K+ ions. A weak association of ABA with the plasma membrane is envisaged because of the rapid recovery obtained upon transferral of the leaves to water.  相似文献   

10.
There is evidence for a role of increased cytoplasmic Ca2+ in the stomatal closure induced by abscisic acid (ABA), but two points of controversy remain the subject of vigorous debate—the universality of Ca2+ as a component of the signaling chain, and the source of the increased Ca2+, whether influx across the plasmalemma, or release from internal stores. We have addressed these questions by patch-clamp studies on guard cell protoplasts of Vicia faba, assessing the effects of ABA in the presence and absence of external Ca2+, and of internal Ca2+ buffers to control levels of cytoplasmic Ca2+. We show that ABA-induced reduction of the K+ inward rectifier can occur in the absence of external Ca2+, but is abolished when Ca2+ buffers are present inside the cell. Thus, some minimum level of cytoplasmic Ca2+ is a necessary component of the signaling chain by which ABA decreases the K+ inward rectifier in stomatal guard cells, thus preventing stomatal opening. Release of Ca2+ from internal stores is capable of mediating the response, in the absence of any Ca2+ influx from the extracellular medium. The work also shows that enhancement of the K+ outward rectifier by ABA is Ca2+ independent, and that other signaling mechanisms must be involved. A role for internal pH, as suggested by H.R. Irving, C.A. Gehring and R.W. Parish (Proc. Natl. Acad. Sci. USA 89:1790–1794, 1990) and M.R. Blatt (J. Gen. Physiol. 99:615–644, 1992), is an attractive working hypothesis.  相似文献   

11.
A study of a mutant variety of Zea mays (ON8147) revealed that the mutant plants, in contrast with normal maize plants, do not exhibit a light-induced increase in the rate of transpiration, and that the ontogeny of the stomatal complex is abnormal. In later stages of differentiation, the guard cells of mutant plants deteriorate, leaving the mature stomata with only the two subsidiary cells. The subsidiary cells in stomata of mutant leaves are similar to those of normal leaves with respect to their capacity to accumulate K+ in the dark, but they do not lose K+ in the light, as do subsidiary cells of stomata of nonmutant plants. It is suggested that impairment of guard cell function causes death of the mutant plant seedlings primarily by restricting CO2 entry into the leaf.  相似文献   

12.
H. Schnabl 《Planta》1978,144(1):95-100
Chloride ions are necessary to compensate for the positively charged potassium ions imported into guard cells of Allium cepa L. during stomatal opening. Therefore an external Cl- supply of intact Allium plants is important. But high levels of chloride have been found to reduce the sensitivity of the starch-lacking stomata and isolated guard cell protoplasts (GCPs) from Allium to potassium ions, fusicoccin and abscisic acid. Furthermore, with high levels of chloride, malate anions disappear from the guard cells of Allium, a finding which contrasts with situation in Vicia where the stomatal sensitivity to K+ ions, fusicoccin and ABA is not influenced by Cl- ions and malate levels are unaffected. It is suggested that the absence of malate as a proton yielding primer inhibits the mechanism of H+/K+ exchange in Allium.Abbreviations ABA abscisic acid - FC fusicoccin - GCPs guard cell protoplasts  相似文献   

13.
Increasing H2O2 levels in guard cells in response to environmental stimuli are recently considered a general messenger involved in the signaling cascade for the induction of stomatal closure. But little is known as to whether subsidiary cells participate in the H2O2-mediated stomatal closure of grass plants. In the present study, 2-week-old seedlings of maize (Zea mays) were exposed to different degrees of soil water deficit for 3 weeks. The effects of soil water contents on leaf ABA and H2O2 levels and stomatal aperture were investigated using physiological, biochemical, and histochemical approaches. The results showed that even under well-watered conditions, significant amounts of H2O2 were observed in guard cells, whereas H2O2 concentrations in the subsidiary cells were negligible. Decreasing soil water contents led to a significant increase in leaf ABA levels associated with significantly enhanced O2 ? and H2O2 contents, consistent with reduced degrees of stomatal conductance and aperture. The significant increase in H2O2 appeared in both guard cells and subsidiary cells of the stomatal complex, and H2O2 levels increased with decreasing soil water contents. Drought-induced increase in the activity of antioxidative enzymes could not counteract the significant increase in H2O2 levels in guard cells and subsidiary cells. These results indicate that subsidiary cells participate in H2O2-mediated stomatal closure, and drought-induced H2O2 accumulation in subsidiary cells is involved in the signaling cascade regulating stomatal aperture of grass plants such as maize.  相似文献   

14.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

15.
GORK is the only outward‐rectifying Kv‐like K+ channel expressed in guard cells. Its activity is tightly regulated to facilitate K+ efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward‐rectifying K+ channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GORK, its distribution and traffic in vivo. We have used transformations with fluorescently‐tagged GORK to explore its characteristics in tobacco epidermis and Arabidopsis guard cells. These studies showed that GORK assembles in puncta that reversibly dissociated as a function of the external K+ concentration. Puncta dissociation parallelled the gating dependence of GORK, the speed of response consistent with the rapidity of channel gating response to changes in the external ionic conditions. Dissociation was also suppressed by the K+ channel blocker Ba2+. By contrast, confocal and protein biochemical analysis failed to uncover substantial exo‐ and endocytotic traffic of the channel. Gating of GORK is displaced to more positive voltages with external K+, a characteristic that ensures the channel facilitates only K+ efflux regardless of the external cation concentration. GORK conductance is also enhanced by external K+ above 1 mm . We suggest that GORK clustering in puncta is related to its gating and conductance, and reflects associated conformational changes and (de)stabilisation of the channel protein, possibly as a platform for transmission and coordination of channel gating in response to external K+.  相似文献   

16.
Abscisic acid (ABA)-induced stomatal closure involves two different signalling chains, only one of which is Ca2+-dependent. ABA induces deactivation of the inward K+ channel and activation of an inward 'background' current, changes also produced by high cytoplasmic Ca2+ or injection of inositol 1,4,5-trisphosphate. It is argued that ABA produces local increases in Ca2+, which are obligatory for the response, even where global increases are not observed with present methodology. Deactivation of the inward K+ channel is abolished in the presence of internal Ca2+ chelator, but not by external Ca2+ chelator, arguing for release from internal stores. ABA-induced turnover in the polyphosphoinositide cycle occurs within 30 s, and may precede the electrical changes. Activation of the outward K+ channel is Ca2+-independent; changes in cytoplasmic pH, of unknown origin, may be responsible.  相似文献   

17.
Hydroponic-grown seedlings of aspen (Populus tremuloides Michx.) were used to investigate how low root temperatures (5°C) affect stomatal conductance and water relations. An isohydric manner of the stomatal behaviour was found with the seedlings when their roots were subjected to the low temperature. Stomatal conductance rapidly and dramatically reduced in response to the low root temperature, while the xylem water potential did not significantly alter. Under the low root temperature, pH value of the xylem sap increased from 6.15 to 6.72 within the initial 4 h, while abscisic acid (ABA) concentration increased by the eighth hour of treatment. K+ concentration of the xylem sap significantly decreased within the 8th h and then reversed by the 24th h. The ion change was accompanied by a decrease and then an increase in the electrical conductivity, and an increase and then a decrease in the osmotic potential. The tempo of physiological responses to the low root temperature suggests that the rapid pH change of the xylem sap was the initial factor which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. Xylem sap from the seedlings subjected low root temperature affected stomatal aperture on leaf discs when they were floated on the sap solution. The stomatal aperture correlated (P = 0.006) with the changed pattern of [K+] in the sap while the range of pH or ABA found in the xylem sap did not influence stomatal aperture of leaf discs in solution. The effect of xylem sap on stomatal aperture on leaf discs was different from on stomatal conductance in the intact seedlings. Comparison was made with previous study with the soil-grown seedlings.  相似文献   

18.
Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H+ pumping and phosphorylation of the plasma membrane H+-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H+ pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.Stomatal guard cells in the epidermis of aerial plants regulate gas exchange between leaves and the atmosphere, allowing the uptake of CO2 for photosynthesis and the loss of water by transpiration. Guard cells integrate a wide variety of stimuli such as light, humidity, temperature, CO2, and plant hormones to prevent excessive water loss and optimize plant growth under changing environmental conditions (Vavasseur and Raghavendra, 2005; Shimazaki et al., 2007). Among them, blue light and abscisic acid (ABA) represent key factors that promote stomatal opening and closure, respectively (Assmann and Shimazaki, 1999; Hetherington, 2001; Schroeder et al., 2001; Roelfsema and Hedrich, 2005). Blue light induces H+ pumping by activation of the plasma membrane H+-ATPase, which causes membrane hyperpolarization and drives K+ uptake into guard cells via inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Schroeder et al., 1987). By contrast, ABA activates the anion channels, thereby causing membrane depolarization and promoting K+ efflux from guard cells via outward-rectifying K+ channels (Schroeder et al., 1987). There is cross talk between the opening and closure systems, and ABA inhibits blue light-induced activation of the H+-ATPase (Shimazaki et al., 1986; Goh et al., 1996; Roelfsema et al., 1998). Such inhibition of H+-ATPase by ABA is crucial to maintain the plasma membrane depolarization and supports efficient stomatal closure of open stomata. For example, when H+-ATPase is kept in the active state, as was found in the open stomata2 mutants, plants lost the stomatal closure response to ABA, which brought about the wilty phenotype even under well-watered conditions (Merlot et al., 2002, 2007). Although the regulation of the stomatal opening system by ABA is important for plant survival, the mechanism by which ABA inhibits the activation of H+-ATPase by blue light is largely unknown.Blue light is required for the activation of phototropins, plant-specific Ser/Thr autophosphorylating kinases, and the activated phototropins transmit the signal to the plasma membrane H+-ATPase for its activation (Kinoshita et al., 2001; Christie, 2007). Activation of the H+-ATPase is caused by the phosphorylation of a Thr residue in the C terminus with subsequent binding of a 14-3-3 protein to the Thr residue (Kinoshita and Shimazaki, 1999; Emi et al., 2001). Since phototropins are Ser/Thr protein kinases, it might be possible that phototropins directly phosphorylate the H+-ATPase. However, this has been shown not to be the case. Recently, we demonstrated that protein phosphatase 1 (PP1), a major member of the PPP family of Ser/Thr protein phosphatases, mediates the signaling between phototropins and H+-ATPase in guard cells (Takemiya et al., 2006). Therefore, ABA is likely to inhibit the signaling molecule(s), including phototropins, PP1, H+-ATPase, and other unidentified components.In guard cells, ABA induces the production of phosphatidic acid (PA), and PA has been implicated in stimulating stomatal closure and inhibiting light-induced stomatal opening (Jacob et al., 1999; Zhang et al., 2004a; Mishra et al., 2006). PA has also been shown to interact with the catalytic subunit of human PP1 (PP1c) and decreases its phosphatase activity (Kishikawa et al., 1999; Jones and Hannun, 2002). It is thus conceivable that PA also functions as an inhibitor of plant PP1c and suppresses the blue light signaling of guard cells.In this study, we investigated the effect of PA on blue light responses of stomata from Vicia faba. We found that PA inhibited the phosphatase activity of PP1c in vitro, suppressed blue light-dependent H+ pumping and phosphorylation of H+-ATPase, and did not affect the autophosphorylation of phototropins in guard cells.  相似文献   

19.
Salicylic acid (SA), a ubiquitous phenolic phytohormone, is involved in many plant physiological processes including stomatal movement. We analysed SA‐induced stomatal closure, production of reactive oxygen species (ROS) and nitric oxide (NO), cytosolic calcium ion ([Ca2+]cyt) oscillations and inward‐rectifying potassium (K+in) channel activity in Arabidopsis. SA‐induced stomatal closure was inhibited by pre‐treatment with catalase (CAT) and superoxide dismutase (SOD), suggesting the involvement of extracellular ROS. A peroxidase inhibitor, SHAM (salicylhydroxamic acid) completely abolished SA‐induced stomatal closure whereas neither an inhibitor of NADPH oxidase (DPI) nor atrbohD atrbohF mutation impairs SA‐induced stomatal closures. 3,3′‐Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) stainings demonstrated that SA induced H2O2 and O2 production. Guard cell ROS accumulation was significantly increased by SA, but that ROS was suppressed by exogenous CAT, SOD and SHAM. NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) suppressed the SA‐induced stomatal closure but did not suppress guard cell ROS accumulation whereas SHAM suppressed SA‐induced NO production. SA failed to induce [Ca2+]cyt oscillations in guard cells whereas K+in channel activity was suppressed by SA. These results indicate that SA induces stomatal closure accompanied with extracellular ROS production mediated by SHAM‐sensitive peroxidase, intracellular ROS accumulation and K+in channel inactivation.  相似文献   

20.
The present study investigated whether Ca2+ mobilization independent of phosphoinositide-specific phospholipase C (PI-PLC) would delay wilting in Arabidopsis thaliana (L.) Heynh. cv. Columbia through mediating stomatal closure at abscisic acid (ABA) concentrations rising beyond a drought-specific threshold value. In wild type (WT) epidermis, the PI-PLC inhibitor (U73122) affected the stomatal response to 20 μM ABA but not to 30 μM ABA. Disruption in GTP-binding protein ά subunit 1 (GPA1) affected the stomatal response to 30 μM ABA, but not to 20 μM ABA. In the gpa1-4 mutant, the inhibitory effects of the Ca2+ buffer, 1,2-bis(0-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), the inactive mastoparan analogue, mas17 and the antagonist of cyclic ADP-ribose synthesis, nicotinamide, were differentially attenuated on 30 μM ABA-induced stomatal closure. By contrast, the NADPH oxidase atrbohD/F double mutation fully suppressed inhibition of 20 μM ABA-induced stomatal closure by BAPTA or U73122 as well as inhibition of 30 μM ABA-induced stomatal closure by BAPTA, mas17 or nicotinamide. On the contrary, The Al resistant alr-104 mutation modulated ABA-induced stomatal closure by a stimulatory effect of U73122 and an increased sensitivity to mas17, nicotinamide and BAPTA. Compared to WT, the atrbohD/F double mutant was more hypersensitive than the gpa1-4 mutant to wilting under the tested water stress conditions, whereas wilting was delayed in the alr-104 mutant. Since the atrbohD/F mutation breaks down ABA-induced Ca2+ signalling through fully preventing apoplastic Ca2+ to enter into the guard cells, these results showed that a putative guard cell GPA1-dependent ADP-ribosyl cyclase activity should contribute to drought tolerance within PI-PLC-independent-Ca2+-mediated ABA signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号