首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discrimination of outer membrane proteins using support vector machines   总被引:3,自引:0,他引:3  
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for dissecting outer membrane proteins (OMPs) from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have developed a method based on support vector machines using amino acid composition and residue pair information. Our approach with amino acid composition has correctly predicted the OMPs with a cross-validated accuracy of 94% in a set of 208 proteins. Further, this method has successfully excluded 633 of 673 globular proteins and 191 of 206 alpha-helical membrane proteins. We obtained an overall accuracy of 92% for correctly picking up the OMPs from a dataset of 1087 proteins belonging to all different types of globular and membrane proteins. Furthermore, residue pair information improved the accuracy from 92 to 94%. This accuracy of discriminating OMPs is higher than that of other methods in the literature, which could be used for dissecting OMPs from genomic sequences. AVAILABILITY: Discrimination results are available at http://tmbeta-svm.cbrc.jp.  相似文献   

2.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the influence of physico-chemical, energetic and conformational properties of amino acid residues for discriminating outer membrane proteins using different machine learning algorithms, such as, Bayes rules, Logistic functions, Neural networks, Support vector machines, Decision trees, etc. We observed that most of the properties have discriminated the OMPs with similar accuracy. The neural network method with the property, free energy change could discriminate the OMPs from other folding types of globular and membrane proteins at the 5-fold cross-validation accuracy of 94.4% in a dataset of 1,088 proteins, which is better than that obtained with amino acid composition. The accuracy of discriminating globular proteins is 94.3% and that of transmembrane helical (TMH) proteins is 91.8%. Further, the neural network method is tested with globular proteins belonging to 30 major folding types and it could successfully exclude 99.4% of the considered 1612 non-redundant proteins. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

3.
Outer membrane proteins (OMPs) play important roles in cell biology. In addition, OMPs are targeted by multiple drugs. The identification of OMPs from genomic sequences and successful prediction of their secondary and tertiary structures is a challenging task due to short membrane-spanning regions with high variation in properties. Therefore, an effective and accurate silico method for discrimination of OMPs from their primary sequences is needed. In this paper, we have analyzed the performance of various machine learning mechanisms for discriminating OMPs such as: Genetic Programming, K-nearest Neighbor, and Fuzzy K-nearest Neighbor (Fuzzy K-NN) in conjunction with discrete methods such as: Amino acid composition, Amphiphilic Pseudo amino acid composition, Split amino acid composition (SAAC), and hybrid versions of these methods. The performance of the classifiers is evaluated by two datasets using 5-fold crossvalidation. After the simulation, we have observed that Fuzzy K-NN using SAAC based-features makes it quite effective in discriminating OMPs. Fuzzy K-NN achieves the highest success rates of 99.00% accuracy for discriminating OMPs from non-OMPs and 98.77% and 98.28% accuracies from α-helix membrane and globular proteins, respectively on dataset1. While on dataset2, Fuzzy K-NN achieves 99.55%, 99.90%, and 99.81% accuracies for discriminating OMPs from non- OMPs, α-helix membrane, and globular proteins, respectively. It is observed that the classification performance of our proposed method is satisfactory and is better than the existing methods. Thus, it might be an effective tool for high throughput innovation of OMPs.  相似文献   

4.
The outer membrane proteins (OMPs) are β-barrel membrane proteins that performed lots of biology functions. The discriminating OMPs from other non-OMPs is a very important task for understanding some biochemical process. In this study, a method that combines increment of diversity with modified Mahalanobis Discriminant, called IDQD, is presented to predict 208 OMPs, 206 transmembrane helical proteins (TMHPs) and 673 globular proteins (GPs) by using Chou's pseudo amino acid compositions as parameters. The overall accuracy of jackknife cross-validation is 93.2% and 96.1%, respectively, for three datasets (OMPs, TMHPs and GPs) and two datasets (OMPs and non-OMPs). These predicted results suggest that the method can be effectively applied to discriminate OMPs, TMHPs and GPs. And it also indicates that the pseudo amino acid composition can better reflect the core feature of membrane proteins than the classical amino acid composition.  相似文献   

5.
Gromiha MM  Suwa M 《Proteins》2006,63(4):1031-1037
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees, etc. for discriminating OMPs. We found that most of the machine learning techniques discriminate OMPs with similar accuracy. The neural network-based method could discriminate the OMPs from other proteins [globular/transmembrane helical (TMH)] at the fivefold cross-validation accuracy of 91.0% in a dataset of 1,088 proteins. The accuracy of discriminating globular proteins is 88.8% and that of TMH proteins is 93.7%. Further, the neural network method is tested with globular proteins belonging to 30 different folding types and it could successfully exclude 95% of the considered proteins. The proteins with SAM domain such as knottins, rubredoxin, and thioredoxin folds are eliminated with 100% accuracy. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

6.
Integral membrane proteins are central to many cellular processes and constitute approximately 50% of potential targets for novel drugs. However, the number of outer membrane proteins (OMPs) present in the public structure database is very limited due to the difficulties in determining structure with experimental methods. Therefore, discriminating OMPs from non-OMPs with computational methods is of medical importance as well as genome sequencing necessity. In this study, some sequence-derived structural and physicochemical features of proteins were incorporated with amino acid composition to discriminate OMPs from non-OMPs using support vector machines. The discrimination performance of the proposed method is evaluated on a benchmark dataset of 208 OMPs, 673 globular proteins, and 206 α-helical membrane proteins. A high overall accuracy of 97.8% was observed in the 5-fold cross-validation test. In addition, the current method distinguished OMPs from globular proteins and α-helical membrane proteins with overall accuracies of 98.2 and 96.4%, respectively. The prediction performance is superior to the state-of-the-art methods in the literature. It is anticipated that the current method might be a powerful tool for the discrimination of OMPs.  相似文献   

7.
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important problem for predicting their secondary and tertiary structures and detecting outer membrane proteins from genomic sequences as well. In this work, we have systematically analyzed the distribution of amino acid residues in the sequences of globular and outer membrane proteins with several motifs, such as A*B, A**B, etc. We observed that the motifs E*L, A*K and L*E occur frequently in globular proteins while S*S, N*S and R*D predominantly occur in OMPs. We have devised a statistical method based on frequently occurring motifs in globular and OMPs and obtained an accuracy of 96% and 82% for correctly identifying OMPs and excluding globular proteins, respectively. Further, we noticed that the motifs of transmembrane helical (TMH) proteins are different from that of OMPs. While I*A, I*L and L*I prefer in TMH proteins S*S, N*S and N*N predominantly occur in OMPs. The information about the occurrence of A*B motifs in TMH and OMPs could discriminate them with an accuracy of 80% for excluding OMPs and 100% for identifying OMPs. The influence of protein size and structural class for discrimination is discussed.  相似文献   

8.
Liang GZ  Ma XY  Li YC  Lv FL  Yang L 《Bio Systems》2011,105(1):101-106
This article offers a novel sequence-based approach to discriminate outer membrane proteins (OMPs). The first step is to use a new representation approach, factor analysis scales of generalized amino acid information (FASGAI) representing hydrophobicity, alpha and turn propensities, bulky properties, compositional characteristics, local flexibility and electronic properties, etc., to characterize sequences of OMPs and non-OMPs. The subsequent data is then transformed into a uniform matrix by the auto cross covariance (ACC). The second step is to develop discrimination predictors of OMPs from non-OMPs using a support vector machine (SVM). The SVM predictors thus successfully produce a high Matthews correlation coefficient (MCC) of 0.916 on 208 OMPs from non-OMPs including 206 α-helical membrane proteins and 673 globular proteins by a fivefold cross validation test. Meanwhile, overall MCC values of 0.923 and 0.930 are obtained for the discrimination OMPs from the α-helical membrane proteins and the globular proteins, respectively. The results demonstrate that the FASGAI-ACC-SVM combination approach shows great prospect of application in the field of bioinformatics or proteomics studies.  相似文献   

9.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

10.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

11.
MOTIVATION: Discriminating outer membrane proteins from other folding types of globular and membrane proteins is an important task both for identifying outer membrane proteins from genomic sequences and for the successful prediction of their secondary and tertiary structures. RESULTS: We have systematically analyzed the amino acid composition of globular proteins from different structural classes and outer membrane proteins. We found that the residues, Glu, His, Ile, Cys, Gln, Asn and Ser, show a significant difference between globular and outer membrane proteins. Based on this information, we have devised a statistical method for discriminating outer membrane proteins from other globular and membrane proteins. Our approach correctly picked up the outer membrane proteins with an accuracy of 89% for the training set of 337 proteins. On the other hand, our method has correctly excluded the globular proteins at an accuracy of 79% in a non-redundant dataset of 674 proteins. Furthermore, the present method is able to correctly exclude alpha-helical membrane proteins up to an accuracy of 80%. These accuracy levels are comparable to other methods in the literature, and this is a simple method, which could be used for dissecting outer membrane proteins from genomic sequences. The influence of protein size, structural class and specific residues for discrimination is discussed.  相似文献   

12.
Discriminating outer membrane proteins for globular proteins (GPs) and other types of membrane proteins from genomic sequences is an important and hot topic. In this paper, a measure based on information discrepancy is proposed and applied to the discrimination of outer membrane proteins. It differs from previous methods which are based on amino acid composition. Our approach focuses on the comparison of subsequence distributions and takes into account the effect of residue order in protein primary structures. As a result, the new approach outperforms all previous methods on the same benchmark datasets. In particular, we show that the proposed approach has correctly identified the outer membrane proteins at an accuracy of 99% for the training set of 337 proteins and has correctly excluded the GPs at an accuracy of 86% in a non-redundant dataset of 668 proteins. Furthermore, this method is able to correctly exclude alpha-helical membrane proteins at an accuracy of 100%.  相似文献   

13.
Wang  Cui-cui  Fang  Yaping  Xiao  Jiamin  Li  Menglong 《Amino acids》2011,40(1):239-248
RNA–protein interactions play a pivotal role in various biological processes, such as mRNA processing, protein synthesis, assembly, and function of ribosome. In this work, we have introduced a computational method for predicting RNA-binding sites in proteins based on support vector machines by using a variety of features from amino acid sequence information including position-specific scoring matrix (PSSM) profiles, physicochemical properties and predicted solvent accessibility. Considering the influence of the surrounding residues of an amino acid and the dependency effect from the neighboring amino acids, a sliding window and a smoothing window are used to encode the PSSM profiles. The outer fivefold cross-validation method is evaluated on the data set of 77 RNA-binding proteins (RBP77). It achieves an overall accuracy of 88.66% with the Matthew’s correlation coefficient (MCC) of 0.69. Furthermore, an independent data set of 39 RNA-binding proteins (RBP39) is employed to further evaluate the performance and achieves an overall accuracy of 82.36% with the MCC of 0.44. The result shows that our method has good generalization abilities in predicting RNA-binding sites for novel proteins. Compared with other previous methods, our method performs well on the same data set. The prediction results suggest that the used features are effective in predicting RNA-binding sites in proteins. The code and all data sets used in this article are freely available at .  相似文献   

14.
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates.  相似文献   

15.
Chen YL  Li QZ  Zhang LQ 《Amino acids》2012,42(4):1309-1316
Due to the complexity of Plasmodium falciparum (PF) genome, predicting mitochondrial proteins of PF is more difficult than other species. In this study, using the n-peptide composition of reduced amino acid alphabet (RAAA) obtained from structural alphabet named Protein Blocks as feature parameter, the increment of diversity (ID) is firstly developed to predict mitochondrial proteins. By choosing the 1-peptide compositions on the N-terminal regions with 20 residues as the only input vector, the prediction performance achieves 86.86% accuracy with 0.69 Mathew’s correlation coefficient (MCC) by the jackknife test. Moreover, by combining with the hydropathy distribution along protein sequence and several reduced amino acid alphabets, we achieved maximum MCC 0.82 with accuracy 92% in the jackknife test by using the developed ID model. When evaluating on an independent dataset our method performs better than existing methods. The results indicate that the ID is a simple and efficient prediction method for mitochondrial proteins of malaria parasite.  相似文献   

16.
The outer membrane proteins (OMPs) from gram-negative bacteria form a distinct group of integral membrane proteins with unusual primary, secondary and tertiary structures. Unlike typical prokaryotic and eukaryotic membrane proteins, bacterial OMPs contain primarily polar sequences, arranged in amphipathic antiparallel beta-barrels, and inclined to the plane of the membrane. Due to their unique structure, OMPs have recently become the subject of extensive study. This article reviews (i) experimental and theoretical approaches of topological analyses used in the study of OMPs, and (ii) the applications of OMPs.  相似文献   

17.
The protein composition of the outer membrane of Gram-negative bacteria consists of about 20 immunochemically distinct proteins, termed outer membrane proteins (OMPs). Apart from their structural role, OMPs have been shown to have other functions, particularly with regard to transport, and have been classified as permeases and porins. Porins, during their interaction with the host, are immunogenic and also directly stimulate several cellular functions. Porins work both as molecules present on the bacterial surface and as molecules released by bacteria. Lipopolysaccharide and OMPs, the major structural macromolecular constituents of the outer membrane, carry out a fundamental role in the pathogenesis of Gram-negative infections. This brief review describes the multiple facets of the biological activities of porins both in vitro and in vivo, particularly focusing on their ability to induce the expression of cytokines and other factors that modulate cellular activities with either pathological or adaptive consequences. This brief discussion will focus on the signal transmission mechanisms induced by bacterial porins.  相似文献   

18.
Hayat M  Khan A  Yeasin M 《Amino acids》2012,42(6):2447-2460
Knowledge of the types of membrane protein provides useful clues in deducing the functions of uncharacterized membrane proteins. An automatic method for efficiently identifying uncharacterized proteins is thus highly desirable. In this work, we have developed a novel method for predicting membrane protein types by exploiting the discrimination capability of the difference in amino acid composition at the N and C terminus through split amino acid composition (SAAC). We also show that the ensemble classification can better exploit this discriminating capability of SAAC. In this study, membrane protein types are classified using three feature extraction and several classification strategies. An ensemble classifier Mem-EnsSAAC is then developed using the best feature extraction strategy. Pseudo amino acid (PseAA) composition, discrete wavelet analysis (DWT), SAAC, and a hybrid model are employed for feature extraction. The nearest neighbor, probabilistic neural network, support vector machine, random forest, and Adaboost are used as individual classifiers. The predicted results of the individual learners are combined using genetic algorithm to form an ensemble classifier, Mem-EnsSAAC yielding an accuracy of 92.4 and 92.2% for the Jackknife and independent dataset test, respectively. Performance measures such as MCC, sensitivity, specificity, F-measure, and Q-statistics show that SAAC-based prediction yields significantly higher performance compared to PseAA- and DWT-based systems, and is also the best reported so far. The proposed Mem-EnsSAAC is able to predict the membrane protein types with high accuracy and consequently, can be very helpful in drug discovery. It can be accessed at http://111.68.99.218/membrane.  相似文献   

19.
大肠杆菌外膜蛋白的分离及其双向电泳图谱的建立   总被引:1,自引:0,他引:1  
本文利用温度诱导的两相分离萃取技术选择性分离未经机械破碎的大肠杆菌细胞外膜蛋白,研究TritonX.114的浓度及处理时间对提取外膜蛋白的影响.实验结果表明,Triton X-114的使用浓度和作用时间均显著影响外膜蛋白的提取效率.SDS-PAGE结果表明不同Triton X-114的使用浓度和作用时间只是影响了外膜蛋白的提取效率而对外膜蛋白提取的种类没有影响.实验发现8%的Triton X-114处理3小时为最佳分离条件,分离得到的样品可用于双向电泳分析.通过对比实验发现样品裂解液中包含低浓度的Tris是外膜蛋白双向电泳成功的关键因素,CHAPS与ASB-14或NP-40结合使用可显著提高外膜蛋白的溶解能力,缩短聚焦时间,从而优化了大肠杆茵外膜蛋白双向电泳技术体系,建立了其双向电泳图谱.  相似文献   

20.
The Omp85 family of proteins has been found in all Gram-negative bacteria and even several eukaryotic organisms. The previously uncharacterized Escherichia coli member of this family is YaeT. The results of this study, consistent with previous Omp85 studies, show that the yaeT gene encodes for an essential cellular function. Direct examinations of the outer membrane fraction and protein assembly revealed that cells depleted for YaeT are severely defective in the biogenesis of outer membrane proteins (OMPs). Interestingly, assemblies of the two distinct groups of OMPs that follow either SurA- and lipopolysaccharide-dependent (OmpF/C) or -independent (TolC) folding pathways were affected, suggesting that YaeT may act as a general OMP assembly factor. Depletion of cells for YaeT led to the accumulation of OMPs in the fraction enriched for periplasm, thus indicating that YaeT facilitates the insertion of soluble assembly intermediates from the periplasm to the outer membrane. Our data suggest that YaeT's role in the assembly of OMPs is not mediated through a role in lipid biogenesis, as debated for Omp85 in Neisseria, thus advocating a conserved OMP assembly function of Omp85 homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号