首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-induced temperature jump experiments were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores of Chromatium minutissimum. The thermoinduced transition of the macromolecular RC complex to a state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220–280 K accounts for tens of seconds with activation energy 0.166 eV/molecule. The rate of the thermoinduced transition in the cytochrome–RC complex was found to be three orders of magnitude slower than the rate of similar thermoinduced transition of the electron transfer reaction from the primary to secondary quinone acceptors studied in the preceding work (Chamorovsky et al. in Eur Biophys J 32:537–543, 2003). Parameters of thermoinduced activation of the electron transfer from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer are discussed in terms of cytochrome c docking onto the RC.  相似文献   

2.
We have recently demonstrated, using site-directed mutagenesis, that soluble cytochromes interact with the Rubrivivax gelatinosus photosynthetic reaction center (RC) in the vicinity of the low-potential heme 1 (c-551, Em = 70 mV) of the tetraheme cytochrome subunit, the fourth heme from the special pair of bacteriochlorophyll [Osyczka, A., et al. (1998) Biochemistry 37, 11732-11744]. Although the mutations generated in that study did not show clear effects on the electron transfer from high-potential iron-sulfur protein (HiPIP), which is the major physiological electron donor to the RC in this bacterium, we report here that other site-directed mutations near the solvent-exposed edge of the same low-potential heme 1, V67K (valine-67 substituted by lysine) and E79K/E85K/E93K (glutamates-79, -85, and -93, all replaced by lysines), considerably inhibit the electron transfer from HiPIP to the RC. Thus, it is concluded that HiPIP, like soluble cytochromes, binds to the RC in the vicinity of the exposed part of the low-potential heme 1 of the cytochrome subunit, although some differences in the configurations of the HiPIP-RC and cytochrome c-RC transient complexes may be postulated.  相似文献   

3.
Rates of thermoinduced conformational transitions of reaction center (RC) complexes providing effective electron transport were studied in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria using methods of fast freezing and laser-induced temperature jump. Reactions of electron transfer from the primary to secondary quinone acceptors and from the multiheme cytochrome c subunit to photoactive bacteriochlorophyll dimer were used as probes of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. In contrast to the quinone complex, the thermoinduced transition of the macromolecular RC complex to the state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds. This transition is thought to be mediated by large-scale conformational dynamics of the macromolecular RC complex.  相似文献   

4.
The kinetics of electron transfer from reduced high-potential iron-sulfur protein (HiPIP) to the photooxidized tetraheme cytochrome c subunit (THC) bound to the photosynthetic reaction center (RC) from the purple sulfur bacterium Allochromatium vinosum were studied under controlled redox conditions by flash absorption spectroscopy. At ambient redox potential Eh = +200 mV, where only the high-potential (HP) hemes of the THC are reduced, the electron transfer from HiPIP to photooxidized HP heme(s) follows second-order kinetics with rate constant k = (4.2 +/- 0.2) 10(5) M(-1) s(-1) at low ionic strength. Upon increasing the ionic strength, k increases by a maximum factor of ca. 2 at 640 mM KCl. The role of Phe48, which lies on the external surface of HiPIP close to the [Fe4S4] cluster and presumably on the electron transfer pathway to cytochrome heme(s), was investigated by site-directed mutagenesis. Substitution of Phe48 with arginine, aspartate, and histidine completely prevents electron donation. Conversely, electron transfer is still observed upon substitution of Phe48 with tyrosine and tryptophan, although the rate is decreased by more than 1 order of magnitude. These results suggest that Phe48 is located on a key protein surface patch essential for efficient electron transfer, and that the presence of an aromatic hydrophobic residue on the putative electron-transfer pathway plays a critical role. This conclusion was supported by protein docking calculations, resulting in a structural model for the HiPIP-THC complex, which involves a docking site close to the LP heme farthest from the bacteriochlorophyll special pair.  相似文献   

5.
Using optical differential spectroscopy and EPR, a parallel study of light-induced electron transfer between the primary (X1) and secondary (X2) quinone-like acceptors in the preparations of reaction centers (RC) isolated from bacterial chromatophore membranes with sodium dodecyl sulfate was carried out. The data from direct measurements of the rate constant temperature dependence for the interaction between light-reduced X1 and X2 (KX1X2) are in good agreement with the data calculated from the kinetic analysis of dark reduction of photooxidized bacteriochlorophyll RC on the acceptors X1 and X2 (KX1X2 = 2.10(-1)S at 20 degrees; Ea = 11,8 kcal.mol-1 within the temperature range of 20 degrees-- -20 degrees). This evidence proves the efficiency of the previously used approach /1, 2/ for the evaluation of the X1-X2 interaction. The method proposed was used for a kinetic analysis of a low-temperature electron transfer from X1 to X2 in RC isolated with lauryldimethylaminoxide (KX1X2 = 2,3.10(2) S-1 at 20 degrees; Ea = 5,5 kcal.mol-1 within the temperature range of 10 degrees-- --70 degrees).  相似文献   

6.
It has previously been shown that replacement of the residue His L168 with Phe (HL168F) in the Rhodopseudomonas viridis reaction center (RC) leads to an unprecedented drastic acceleration of the initial electron transfer rate. Here we describe the determination of the x-ray crystal structure at 2.00-A resolution of the HL168F RC. The electron density maps confirm that a hydrogen bond from the protein to the special pair is removed by this mutation. Compared with the wild-type RC, the acceptor of this hydrogen bond, the ring I acetyl group of the "special pair" bacteriochlorophyll, D(L), is rotated, and its acetyl oxygen is found 1.1 A closer to the bacteriochlorophyll-Mg(2+) of the other special pair bacteriochlorophyll, D(M). The rotation of this acetyl group and the increased interaction between the D(L) ring I acetyl oxygen and the D(M)-Mg(2+) provide the structural basis for the previously observed 80-mV decrease in the D(+)/D redox potential and the drastically increased rate of initial electron transfer to the accessory bacteriochlorophyll, B(A). The high quality of the electron density maps also allowed a reliable discussion of the mode of binding of the triazine herbicide terbutryn at the binding site of the secondary quinone, Q(B).  相似文献   

7.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

8.
Isotope substitution of H2O by 2H2O causes an increase in the rate of dark recombination between photooxidized bacteriochlorophyll (P+) and reduced primary quinone acceptor in Rhodobacter sphaeroides reaction centers (RC) at room temperature. The isotopic effect declines upon decreasing the temperature. Dehydration of RC complexes of Ectothiorhodospira shaposhnikovii chromatophores containing multiheme cytochrome c causes a decrease in the efficiency of transfer of a photomobilized electron between the primary and secondary quinone acceptors and from cytochrome to P+. In the case of H2O medium these effects are observed at a lower hydration than in 2H2O-containing medium. In the E. shaposhnikovii chromatophores subjected to dehydration in H2O, the rate of electron transfer from the nearest high-potential cytochrome heme to P+ is virtually independent of hydration within the P/P0 range from 0.1 to 0.5. In samples hydrated in 2H2O this rate is approximately 1.5 times lower than in H2O. However, the isotopic effect of this reaction disappears upon dehydration. The intramolecular electron transfer between two high-potential hemes of cytochrome c in samples with 2H2O is inhibited within this range of P/P0, whereas in RC samples with H2O there is a trend toward gradual inhibition of the interheme electron transfer with dehydration. The experimental results are discussed in terms of the effects of isotope substitution and dehydration on relaxation processes and charge state of RC on implementation of the reactive states of RC providing electron transfer control.  相似文献   

9.
In the photosynthetic bacterium, Rhodobacter sphaeroides, the mobile electron carrier, cytochrome c2 (cyt c2) transfers an electron from reduced heme to the photooxidized bacteriochlorophyll dimer in the membrane bound reaction center (RC) as part of the light induced cyclic electron transfer chain. A complex between these two proteins that is active in electron transfer has been crystallized and its structure determined by X-ray diffraction. The structure of the cyt:RC complex shows the cyt c2 (cyt c2) positioned at the center of the periplasmic surface of the RC. The exposed heme edge from cyt c2 is in close tunneling contact with the electron acceptor through an intervening bridging residue, Tyr L162 located on the RC surface directly above the bacteriochlorophyll dimer. The binding interface between the two proteins can be divided into two regions: a short-range interaction domain and a long-range interaction domain. The short-range domain includes residues immediately surrounding the tunneling contact region around the heme and Tyr L162 that display close intermolecular contacts optimized for electron transfer. These include a small number of hydrophobic interactions, hydrogen bonds and a pi-cation interaction. The long-range interaction domain consists of solvated complementary charged residues; positively charged residues from the cyt and negatively charged residues from the RC that provide long range electrostatic interactions that can steer the two proteins into position for rapid association.  相似文献   

10.
The discovery by Louis N. M. Duysens in the 1950s that illumination of photosynthetic purple bacteria can cause oxidation of either a bacteriochlorophyll complex (P) or a cytochrome was followed by an extended period of uncertainty as to which of these processes was the `primary' photochemical reaction. Similar questions arose later about the roles of bacteriopheophytin (BPh) and quinones as the initial electron acceptor. This is a personal account of kinetic measurements that showed that electron transfer from P to BPh occurs in the initial step, and that the oxidized bacteriochlorophyll complex (P+) then oxidizes the cytochrome while the reduced BPh transfers an electron to a quinone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The arrangement and the electron transfer are studied for photosynthetic reaction centers (RC) of Rhodopseudomonas sphaeroides reconstituted into phospholipid vesicles. Freeze-etch electron micrographs of phase separated mixed vesicles reveal an RC enrichment in the phase containing the acidic lipid serine. It is demonstrated that the electron transfer from cytochrome c to RC involves a two-dimensional diffusion of the membrane bound electron donor with diffusion coefficients (D approximately 10(-9) cm2/sec) characteristic for membrane proteins.  相似文献   

12.
《BBA》2020,1861(8):148204
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow.  相似文献   

13.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

14.
Although the two electron-transfer branches in the reaction centers (RC) of purple bacteria are virtually symmetric, it is well known that only one of them is functionally active (the A-branch). The mechanisms of functional asymmetry of structurally symmetric branches of the electron transport system are analyzed in this work within the framework of the theory of bimolecular charge-transfer complexes (CTC). CTC theory is shown to provide an explanation of this phenomenon. According to the CTC theory, the dominance of one branch is required to implement the CTC state in special bacteriochlorophyll pairs of RC, in which more than 30% of the excited electron density in the CTC is shifted toward one of the bacteriochlorophyll molecules. This causes a significant increase in the efficiency of further electron transfer to the primary quinone acceptor as compared to a system with two absolutely symmetric electron transfer branches. Specific features of dielectric asymmetry near the RC special pair are discussed. It is emphasized that a strong CTC is able to provide effective trapping of electronic excitation energy from antenna chlorophyll, which is a main function of the RC. Hypothetical stages of CTC formation in other classes of photosynthesizing bacteria during evolution are discussed.  相似文献   

15.
The sensitivity of intact cells of purple photosynthetic bacterium Rhodobacter sphaeroides wild type to low level (<100 μM) of mercury (Hg2?) contamination was evaluated by absorption and fluorescence spectroscopies of the bacteriochlorophyll-protein complexes. All assays related to the function of the reaction center (RC) protein (induction of the bacteriochlorophyll fluorescence, delayed fluorescence and light-induced oxidation and reduction of the bacteriochlorophyll dimer and energization of the photosynthetic membrane) showed prompt and later effects of the mercury ions. The damage expressed by decrease of the magnitude and changes of rates of the electron transfer kinetics followed complex (spatial and temporal) pattern according to the different Hg2? sensitivities of the electron transport (donor/acceptor) sites including the reduced bound and free cytochrome c? and the primary reduced quinone. In contrast to the RC, the light harvesting system and the bc? complex demonstrated much higher resistance against the mercury pollution. The 850 and 875 nm components of the peripheral and core complexes were particularly insensitive to the mercury(II) ions. The concentration of the photoactive RCs and the connectivity of the photosynthetic units decreased upon mercury treatment. The degree of inhibition of the photosynthetic apparatus was always higher when the cells were kept in the light than in the dark indicating the importance of metabolism in active transport of the mercury ions from outside to the intracytoplasmic membrane. Any of the tests applied in this study can be used for detection of changes in photosynthetic bacteria at the early stages of the action of toxicants.  相似文献   

16.
The electrostatic interactions governing binding and electron transfer from cytochrome c(2) (cyt c(2)) to the reaction center (RC) from the photosynthetic bacteria Rhodobacter sphaeroides were studied by using site-directed mutagenesis to change the charges of residues on the RC surface. Charge-reversing mutations (acid --> Lys) decreased the binding affinity for cyt c(2). Dissociation constants, K(D) (0.3--250 microM), were largest for mutations of Asp M184 and nearby acid residues, identifying the main region for electrostatic interaction with cyt c(2). The second-order rate constants, k(2) (1--17 x 10(8) M(-1) s(-1)), increased with increasing binding affinity (log k(2) vs log 1/K(D) had a slope of approximately 0.4), indicating a transition state structurally related to the final complex. In contrast, first-order electron transfer rates, k(e), for the bound cyt did not change significantly (<3-fold), indicating that electron tunneling pathways were unchanged by mutation. Charge-neutralizing mutations (acid --> amide) showed changes in binding free energies of approximately 1/2 the free energy changes due to the corresponding charge-reversing mutations, suggesting that the charges in the docked complex remain well solvated. Charge-enhancing mutations (amide --> acid) produced free energy changes of the same magnitude (but opposite sign) as changes due to the charge-neutralizing mutations in the same region, indicating a diffuse electrostatic potential due to cyt c(2). A two-domain model is proposed, consisting of an electrostatic docking domain with charged surfaces separated by a water layer and a hydrophobic tunneling domain with atomic contacts that provide an efficient pathway for electron transfer.  相似文献   

17.
In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.  相似文献   

18.
Light-induced absorbance changes were measured at temperatures between --30 and --55 degrees C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the "primary" to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+. A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artifical donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

19.
Cytochrome c2 (cyt) is the mobile electron donor to the reaction center (RC) in photosynthetic bacteria. The electrostatic interactions involved in the dynamics of docking of cyt onto the RC were examined by double mutant studies of the rates of electron transfer between six modified Rhodobacter sphaeroides RCs in which negatively charged acid residues were replaced with Lys and five modified Rhodobacter capsulatus Cyt c2 molecules in which positively charged Lys residues were replaced with Glu. We measured the second-order rate constant, k2, for electron transfer from the reduced cyt to the oxidized primary donor on the RC, which reflects the energy of the transition state for the formation of the active electron transfer complex. Strong interactions were found between Lys C99 and Asp M184/Glu M95, and between Lys C54 and Asp L261/Asp L257. The interacting residues were found to be located close to each other in the recently determined crystal structure of the cyt-RC complex [Axelrod, H., et al. (2002) J. Mol. Biol. (in press)]. The interaction energies were approximately inversely proportional to the distances between charges. These results support earlier suggestions [Tetreault, M., et al. (2001) Biochemistry 40, 8452-8462] that the structure of the transition state in solution resembles the structure of the cyt-RC complex in the cocrystal and indicate that specific electrostatic interactions facilitate docking of the cyt onto the RC in a configuration optimized for both binding and electron transfer. The specific interaction between Asp M184 and Lys C99 may help to nucleate short-range hydrophobic contacts.  相似文献   

20.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of anti-mycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll.2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift.3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reduction 3- to 4-fold under certain if not all conditions.4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase.5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer.6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号