首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three-dimensional solution structure of apo-neocarzinostatin has been resolved from nuclear magnetic resonance spectroscopy data. Up to 1034 constraints were used to generate an initial set of 45 structures using a distance geometry algorithm (DSPACE). From this set, ten structures were subjected to refinement by restrained energy minimization and molecular dynamics. The average atomic root mean square deviations between the final ten structures and the mean structure obtained by averaging their coordinates run from 0.085 nm for the best defined beta-sheet regions of the protein to 0.227 nm for the side chains of the most flexible loops. The solution structure of apo-neocarzinostatin is closely similar to that of the related proteins, macromomycin and actinoxanthin. It contains a seven-stranded antiparallel beta-barrel which forms, together with two external loops, a deep cavity that is the chromophore binding site. It is noteworthy that aromatic side chains extend into the binding cleft. They may be responsible for the stabilization of the holo-protein complex and for the chromophore specificity within the antitumoral family.  相似文献   

2.
Three-dimensional solution structure of Acanthamoeba profilin-I   总被引:6,自引:0,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,122(6):1277-1283
We have determined a medium resolution three-dimensional solution structure of Acanthamoeba profilin-I by multidimensional nuclear magnetic resonance spectroscopy. This 13-kD actin binding protein consists of a five stranded antiparallel beta sheet flanked by NH2- and COOH-terminal helices on one face and by a third helix and a two stranded beta sheet on the other face. Data from actin-profilin cross- linking experiments and the localization of conserved residues between profilins in different phyla indicate that actin binding occurs on the molecular face occupied by the terminal helices. The other face of the molecule contains the residues that differ between Acanthamoeba profilins-I and II and may be important in determining the difference in polyphosphoinositide binding between these isoforms. This suggests that lipids and actin bind to different faces of the molecule.  相似文献   

3.
Three-dimensional structure of interleukin 8 in solution   总被引:22,自引:0,他引:22  
The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.  相似文献   

4.
The three-dimensional structure of apo-NCS, as revealed by proton NMR, is based on an antiparallel seven-stranded beta-barrel. This fold is frequently encountered in protein structures, especially for immunoglobulin domains. The strands forming the barrel are joined by flexible loops of which three are implicated in the ligand binding site of these proteins. In this paper a preliminary comparison is given with respect to the static and dynamic properties of both the constant beta-barrel and the active loops for apo-NCS and the variable VH domain of an immunoglobulin Fab' fragment.  相似文献   

5.
Proton NMR spectral resonances of thioredoxin m from spinach have been assigned, and its solution structure has been determined on the basis of 1156 nuclear Overhauser effect- (NOE-) derived distance constraints by using restrained molecular dynamics calculations. The average pairwise root-mean-square deviation (RMSD) for the 25 best NMR structures for the backbone was 1.0 +/- 0.1, when the structurally well-defined residues were considered. The N- and C-terminal segments (1-13 and 118-119) and residues 41-49, comprising the active site, are highly disordered. At the time of concluding this work, a crystal structure of this protein was reported, in which thioredoxin m was found to crystallize as noncovalent dimers. Although the solution and crystal structures are very similar, no evidence was found about the existence of dimers in solution, thus confirming that dimerization is not needed for the regulatory activity of thioredoxin m. The spinach thioredoxin m does not unfold by heat in the range 25-85 degrees C, as revealed by thermal circular dichroic (CD) measurements. However, its unfolding free energy (9.1 +/- 0.8 kcal mol(-1), at pH 5.3 and 25 degrees C) could be determined by extrapolating the free energy values obtained at different concentrations of guanidinium chloride (GdmCl). The folding-unfolding process is two-state as indicated by the coincidence of the CD denaturation curves obtained at far and near UV. The H/D exchange behavior of backbone amide protons was analyzed. The slowest-exchanging protons, requiring a global-unfolding mechanism in order to exchange, are those from beta2, beta3, and beta4, the central strands of the beta-sheet, which constitute the main element of the core of the protein. The free energies obtained from exchange measurements of protons belonging to the alpha-helices are lower than those derived from GdmCl denaturation studies, indicating that those protons exchange by local-unfolding mechanisms.  相似文献   

6.
The complement control protein (CCP) modules (also known as short consensus repeats) are defined by a consensus sequence within a stretch of about 60 amino acid residues. These modules have been identified more than 140 times in over 20 proteins, including 12 proteins of the complement system. The solution structure of the 16th CCP module from human complement factor H has been determined by a combination of 2-dimensional nuclear magnetic resonance spectroscopy and restrained simulated annealing. In all, 548 structurally important nuclear Overhauser enhancement cross-peaks were quantified as distance restraints and, together with 41 experimentally measured angle restraints, were incorporated into a simulated annealing protocol to determine a family of closely related structures that satisfied the experimental observations. The CCP structure is shown to be based on a beta-sandwich arrangement; one face made up of three beta-strands hydrogen-bonded to form a triple-stranded region at its centre and the other face formed from two separate beta-strands. Both faces of the molecule contribute highly conserved hydrophobic side-chains to a compact core. The regions between the beta-strands are composed of both well-defined turns and less well-defined loops. Analysis of CCP sequence alignments, in light of the determined structure, reveals a high degree of conservation amongst residues of obvious structural importance, while almost all insertions, deletions or replacements observed in the known sequences are found in the less well-defined loop regions. On the basis of these observations it is postulated that models of other CCP modules that are based on the structure presented here will be accurate. Certain families of CCP modules differ from the consensus in that they contain extra cysteine residues. As a test of structural consensus, the extra disulphide bridges are shown to be easily accommodated within the determined CCP model.  相似文献   

7.
Three-dimensional solution structure of the src homology 2 domain of c-abl.   总被引:5,自引:0,他引:5  
SH2 regions are protein motifs capable of binding target protein sequences that contain a phosphotyrosine. The solution structure of the abl SH2 product, a protein of 109 residues and 12.1 kd, has been determined by multidimensional nuclear magnetic resonance spectroscopy. It is a compact spherical domain with a pair of three-stranded antiparallel beta sheets and a C-terminal alpha helix enclosing the hydrophobic core. Three arginines project from a short N-terminal alpha helix and one beta sheet into the putative phosphotyrosine-binding site, which lies on a face distal from the termini. Comparison with other SH2 sequences supports a common global fold and mode of phosphotyrosine binding for this family.  相似文献   

8.
M H Werner  D E Wemmer 《Biochemistry》1992,31(4):999-1010
The three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy and dynamical simulated annealing using the program XPLOR. The structure was defined by 907 NOEs involving intra- and interresidue contacts which served as distance constraints for a protocol of dynamical simulated annealing. In addition, 48 phi angle constraints involving non-proline amino acids, 29 chi angle constraints, six omega angle constraints for the X-Pro peptide bond, and 35 stereoassignments for prochiral centers were incorporated during the course of the calculation. The protein is characterized by two distinct binding domains for serine protease. Each domain is comprised of a beta-hairpin (antiparallel beta-sheet and a cis-proline-containing type VIb reverse turn) with a short segment making a third strand of antiparallel beta-sheet. The structure determination and refinement are described, and the structure is compared to other structures of Bowman-Birk inhibitors as well as other families of serine protease inhibitors.  相似文献   

9.
The solution structure of the ectodomain of simian immunodeficiency virus (SIV) gp41 (e-gp41), consisting of residues 27-149, has been determined by multidimensional heteronuclear NMR spectroscopy. SIV e-gp41 is a symmetric 44 kDa trimer with each subunit consisting of antiparallel N-terminal (residues 30-80) and C-terminal (residues 107-147) helices connected by a 26 residue loop (residues 81-106). The N-terminal helices of each subunit form a parallel coiled-coil structure in the interior of the complex which is surrounded by the C-terminal helices located on the exterior of the complex. The loop region is ordered and displays numerous intermolecular and non-sequential intramolecular contacts. The helical core of SIV e-gp41 is similar to recent X-ray structures of truncated constructs of the helical core of HIV-1 e-gp41. The present structure establishes unambiguously the connectivity of the N- and C-terminal helices in the trimer, and characterizes the conformation of the intervening loop, which has been implicated by mutagenesis and antibody epitope mapping to play a key role in gp120 association. In conjunction with previous studies, the solution structure of the SIV e-gp41 ectodomain provides insight into the binding site of gp120 and the mechanism of cell fusion. The present structure of SIV e-gp41 represents one of the largest protein structures determined by NMR to date.  相似文献   

10.
S100A13 is a homodimeric protein that belongs to the S100 subfamily of EF-hand Ca2+-binding proteins. S100A13 exhibits unique physical and functional properties not observed in other members of the S100 family. S100A13 is crucial for the non-classical export of acidic fibroblast growth factors (FGFs-1), which lack signal peptide at their N-terminal end. In the present study, we report the three-dimensional solution structure of Ca2+-bound S100A13 using a variety of 3D NMR experiments. The structure of S100A13 is globular with four helices and an antiparallel beta-sheet in each subunit. The dimer interface is formed mainly by an antiparallel arrangement of helices H1, H1', H4, and H4'. Isothermal titration calorimetry (ITC) experiments show that S100A13 binds non-cooperatively to four calcium ions. Prominent differences exist between the three-dimensional structures of S100A13 and other S100 proteins. The hydrophobic pocket that largely contributes to protein-protein interactions in other S100 proteins is absent in S100A13. The structure of S100A13 is characterized by a large patch of negatively charged residues flanked by dense cationic clusters contributed largely by the positively charged residues located at the C-terminal end. Results of ITC experiments reveal that S100A13 lacking the C-terminal segment (residues 88-98) fails to bind FGF-1. The three-dimensional structure of S100A13 not only provides useful clues on its role in the non-classical export of signal peptide-less proteins such as FGF-1 but also paves the way for rational design of drugs against FGF-induced tumors.  相似文献   

11.
The sequence-specific resonance assignment of apo-neocarzinostatin from Streptomyces carzinostaticus was carried out from two-dimensional proton-NMR spectra. The assignments were obtained for the backbone protons of 111 of the 113 residues of the protein, missing the two C alpha H of one glycine but including 3 of the 4 prolines. The majority of side chain protons were also assigned. The secondary structure derived from the analysis of sequential connections corresponds to ten beta-strands separated by clearly identified loops and turns. Inter-strand connectivities and slowly exchanging amide protons confirm the presence of the two disulfide bridges from Cys37 to Cys47 and from Cys88 to Cys93 and indicate a global folding similar to that of the similar proteins, actinoxanthin and macromomycin, for which crystallographic data are available.  相似文献   

12.
S Ludvigsen  F M Poulsen 《Biochemistry》1992,31(37):8783-8789
The solution structure of a 125-residue basic protein, barwin, has been determined using 1H nuclear magnetic resonance spectroscopy. This protein is closely related to domains in proteins encoded by wound-induced genes in plants. Analysis of the 1H nuclear Overhauser spectrum revealed the assignment of more than 1400 nuclear Overhauser effects. Twenty structures were calculated based on 676 nontrivial distance restraints, 152 torsion angle restraints (92 phi, 56 chi 1, and 4 omega for proline), and stereospecific assignments of 38 chiral centers, using distance geometry, simulated annealing, and restrained energy minimization. None of the distance restraints was violated by more than 0.5 A in any of the 20 structures, and none of the torsion angle restraints was violated by more than 1 degree in any of the structures. The RMS difference between the calculated and target interproton distance restraints is 0.033 A, and the average atomic RMS differences between the 20 structures and their geometric average are 1.23 A for backbone atoms and 1.73 A for all heavy atoms. The dominating structural feature of the protein is a well-defined four-stranded antiparallel beta-sheet, two parallel beta-sheets packed antiparallel to each other and four short alpha-helices. The binding site of barwin to the tetramer N-acetylglucosamine has been qualitatively investigated, and the dissociation constant of the complex has been determined using one-dimensional 1H nuclear magnetic resonance spectroscopy.  相似文献   

13.
The three-dimensional structure of acyl-coenzyme A binding protein as encoded by the recombinant gene in Escherichia coli has been determined using nuclear magnetic resonance (n.m.r.) spectroscopy. The structure consists of four alpha-helices A1 (residues 3 to 15), A2 (residues 20 to 36), A3 (residues 51 to 60), and A4 (residues 65 to 85). A1 and A4, and A2 and A3, run in parallel pairs. A2 runs anti-parallel to A1 and A4. The three-dimensional structure of the protein is reminiscent of a shallow bowl with a rim. The "rim" is characterized by many polar and charged groups, whereas the inside and outside surface is predominantly hydrophobic with patches of uncharged polar hydroxyl groups of threonyl, serinyl and tyrosyl residues. The inside bottom contains through two epsilon-amino groups of lysine residues (Lys13 and Lys32) suggesting that the binding site for the nucleotide part of the acyl-coenzyme A part of the ligand molecule is at the inside surface of the bowl. The structure determination was done on the basis of measurements of the intensities of nuclear Overhauser effects (NOEs) and coupling constants that were translated into interatom distance restraints for 833 atom pairs, and 87 dihedral angle restraints, of which 23 were in chiral centers. In all, 42 hydrogen bonds were identified by n.m.r. and provided an additional 84 distance restraints. A total of 20 structures were calculated and the structures can be aligned to a root-mean-square deviation of 0.5 A for the backbone atoms of the residues in the four helices. A region of six residues could not be defined by the restraints obtained by n.m.r. The program Pronto was used for the spectrum analysis in general, and especially for the assignment of the individual NOEs, the integration of the cross peaks, and the measurements of the coupling constants. The programs DIANA and X-PLOR have been used in the structure calculations and evaluations.  相似文献   

14.
The hematopoietic cellular kinase (Hck) is a member of the Srcfamily of non-receptor protein-tyrosine kinases that is expressedpredominantly in granulocytes, monocytes and macrophages. Recentobservations suggest that Hck may be activated in HIV-infected macrophagesand in chronic myelogenous leukemia cells that express Bcr-Abl. In order toincrease our understanding of the structural basis for regulation of Hckactivity under normal and pathological conditions, we have solved thesolution structure of the uncomplexed Hck SH2 domain using NMR spectroscopy.A novel procedure that uses intraresidueHNH distances as references forconverting NOE intensities into distance restraints has been described. Atotal of 1757 significant experimental restraints were derived from NMRspectroscopic data including 238 medium-range and 487 long-range distancerestraints and 177 torsion angle restraints. These restraints were used in asimulated annealing procedure to generate 20 structures with the programDYANA. Superimposition of residues 5–104 upon the mean coordinate setyielded an average atomic rmsd values of 0.42 ± 0.08 Å for theN,C,C atoms and 0.81 ± 0.08 Å forall heavy atoms. Rmsd values for those residues in the regions of orderedsecondary structure were 0.27 ± 0.04 Å for theN,C,C atoms and 0.73 ± 0.06 Å forall heavy atoms.  相似文献   

15.
The solution structure of a disulfide bond isomer of human insulin-like growth factor-I (IGF-I) was determined using homonuclear NMR methods. A total of 292 interatomic distance constraints, including 12 related to the disulfide bridges, was used in the distance geometry calculations. The determined structures contain two helical rods corresponding to the sequence regions, Ala8-Cys18 and Leu54-Cys61. Comparison with the previously determined structure of native human IGF-I revealed partial correspondence of the secondary structure (helices I: Ala8-Cys18 and helices III: Leu54-Cys61) and internal packing. Helix II in native human IGF-I (residues Gly42-Cys48) is disrupted in the isomer. A similar relationship has been described between the structure of native insulin and a homologous disulfide isomer, suggesting that these alternative folds represent general features of insulin-like sequences. In each case the precision of the distance geometry ensemble is low due in part to resonance broadening and a paucity of NOEs relative to other globular proteins of this size. These observations suggest that tertiary structure of the isomer is not highly ordered. Comparison of the biological activities of native and the disulfide bond isomer of human IGF-I highlight the importance of Tyr24, Phe25, Phe49-Cys52 and Phe16 in binding to the IGF-I receptor or specific IGFBPs. The relationship of this proposed receptor-binding surface of human IGF-I to those of insulin is discussed.  相似文献   

16.
X L Gao  W Burkhart 《Biochemistry》1991,30(31):7730-7739
Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. We describe the use of apo-NCS as a model system for applying combined two- and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins (Mr greater than 10K) without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, we have assigned 99% of the protons, including those of the side chains, and identified about 1270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing our results with those reported recently on 2D NMR studies of apo-NCS [Adjadj, E., Mispelter, J., Quiniou, E., Dimicoli, J.-L., Favadon, V., & Lhoste, J.-M. (1990) Eur. J. Biochem. 190, 263-271; Remerowski M. L., Glaser, S. J., Sieker, L., Samy, T. S. A., & Drobny, G. P. (1990) Biochemistry 29, 8401-8409] demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. We are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments.  相似文献   

17.
H Gouda  H Torigoe  A Saito  M Sato  Y Arata  I Shimada 《Biochemistry》1992,31(40):9665-9672
The three-dimensional solution structure of the recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G, was determined by NMR spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. On the basis of 692 experimental constraints including 587 distance constraints obtained from the nuclear Overhauser effect (NOE), 57 torsion angle (phi, chi 1) constraints, and 48 constraints associated with 24 hydrogen bonds, a total of 10 converged structures of FB were obtained. The atomic root mean square difference among the 10 converged structures is 0.52 +/- 0.10 A for the backbone atoms and 0.98 +/- 0.08 A for all heavy atoms (excluding the N-terminal segment from Thr1 to Glu9 and the C-terminal segment from Gln56 to Ala60, which are partially disordered). FB is composed of a bundle of three alpha-helices, i.e., helix I (Gln10-His19), helix II (Glu25-Asp37), and helix III (Ser42-Ala55). Helix II and helix III are antiparallel to each other, whereas the long axis of helix I is tilted at an angle of about 30 degrees with respect to those of helix II and helix III. Most of the hydrophobic residues of FB are buried in the interior of the bundle of the three helices. It is suggested that the buried hydrophobic residues form a hydrophobic core, contributing to the stability of FB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We report here the complete determination of the solution structure of acylphosphatase, a small enzyme that catalyses the hydrolysis of organic acylphosphates, as determined by distance geometry methods based on nuclear magnetic resonance information. A non-standard strategy for the distance geometry calculations was used and is described here some detail. The five best structures were then refined by restrained energy minimization and molecular dynamics in order to explore the conformational space consistent with the experimental data. We address the question of whether the solution structure of acylphosphatase follows the general principles of protein structure, i.e. those learned from analysing crystal structures. Static and dynamic features are discussed in detail. An uncommon beta-alpha-beta motif, so far found only in procarboxypeptidase B and in an RNA-binding protein, is present in acylphosphatase.  相似文献   

19.
The natural complex Neocarzinostatin comprises a labile chromophore noncovalently bound to an 11.2 kDa protein. We present the first high-resolution structure of a novel complex derived from the recombinant apoprotein bound to a non-natural synthetic chromophore. Fluorescence and nuclear magnetic resonance spectroscopy were used to probe the strength and location of binding. Binding occurred in a location similar to that observed for the chromophore in the natural Neocarzinostatin complex, but with a distinct orientation. These results provide structural evidence that the apoprotein can readily accommodate small druglike entities, other than the natural chromophore within its binding cleft. The clinical use of the natural complex described by others, together with the results reported here, suggests potential applications for small molecule binding by apo-Neocarzinostatin.  相似文献   

20.
S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J. Biomol. NMR 14, 87-88]. In this study, the three-dimensional structure of reduced apo-S100A1 was determined by NMR spectroscopy using a total of 2220 NOE distance constraints, 258 dihedral angle constraints, and 168 backbone hydrogen bond constraints derived from a series of 2D, 3D, and 4D NMR experiments. The final structure was found to be globular and compact with the four helices in each subunit aligning to form a unicornate-type four-helix bundle. Intermolecular NOE correlations were observed between residues in helices 1 and 4 from one subunit to residues in helices 1' and 4' of the other subunit, respectively, consistent with the antiparallel alignment of the two subunits to form a symmetric X-type four-helix bundle as found for other members of the S100 protein family. Because of the similarity of the S100A1 dimer interface to that found for S100B, it was possible to calculate a model of the S100A1/B heterodimer. This model is consistent with a number of NMR chemical shift changes observed when S100A1 is titrated into a sample of (15)N-labeled S100B. Helix 3 (and 3') of S100A1 was found to have an interhelical angle of -150 degrees with helix 4 (and 4') in the apo state. This crossing angle is quite different (>50 degrees ) from that typically found in other EF-hand containing proteins such as apocalmodulin and apotroponin C but more similar to apo-S100B, which has an interhelical angle of -166 degrees. As with S100B, it is likely that the second EF-hand of apo-S100A1 reorients dramatically upon the addition of Ca(2+), which can explain the Ca(2+) dependence that S100A1 has for binding several of its biological targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号