首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The study was to investigate the effects of varying degrees of valvular stenosis on the hemodynamics of the main (MPA), left (LPA), and right (RPA) pulmonary arteries. Particle flow visualization was used to examine the flow patterns in a series of pulmonary artery models manufactured out of glass. These glass models were made based on the geometry of the porcine pulmonary arteries with dilatation in the MPA and LPA. Also, detailed pressure mappings in the models were conducted using a side-hole catheter. As the valve became stenotic, a jet-like flow was observed in the MPA. A higher degree of valvular stenosis corresponded to a narrower jet. This jet-like flow was noted to deflect away from the centerline and impinge on the roof of the dilated MPA. Additionally, a notable pressure gradient across the deflected jet-like flow in the direction of its radius of curvature was seen. Moreover, secondary flows started to appear in the dilated MPA. This suggested that the change in geometry in the MPA, due to its dilatation, had a marked effect on the pulmonary artery hemodynamics. In the LPA and RPA, the strengths of the secondary flows increased as the valve became more stenotic. The flow patterns observed in the LPA appeared to be more disturbed than in the RPA, due to the poststenotic, dilatation present in the LPA. Pressure recovery along the axial direction in the MPA was observed for all the stenotic valves studied. As the degree of valvular stenosis increased, the transvalvular energy loss increased. Moreover, it was observed that the energy loss decreased progressively as the flow traveled downstream. This tendency was consistent with the phenomenon of pressure recovery observed in the pressure measurement. The study demonstrates the importance of analyzing biological flows from a three-dimensional viewpoint.  相似文献   

4.
Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR), but the three-dimensional (3D) arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57 nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.  相似文献   

5.
Structural and biochemical properties of the tendons have been studied in man and dogs. Macro-microscopical, histological, histochemical methods have been applied; the tendinous strength for tearing has been tried; elasticity and tissue pressure in places of stretching and pressing have been investigated. A close connection has been revealed between biochemical conditions of functioning of the tendinous parts and their structure. Absolute strength of the tendinous parts is proportional to the applied stretching force, though it is 4--5 times as great as the latter. Where the tendinous tissue is pressed, its relative strength decreases, nevertheless, deterioration of its biochemical properties is compensated by its enlargement quantitatively. As the lateral pressing increases, tendinous and osseous tissues are forming. Indices of the intraorganic tissue pressure are much greater in place of pressing.  相似文献   

6.
7.
In pelagic ecosystems, the principal source of organic matter is via autotrophic production and the primary sink is through heterotrophic respiration. One would therefore anticipate that there is some degree of linkage between these two compartments. Recent work has shown that respiration in the light is higher than dark respiration. Consequently, many of the methods used to determine respiration and production are biased as they require the assumption that light and dark respiration rates are equivalent. We show here that, in a coastal ecosystem, under visible light exposure, respiration in the light is related to gross production. More than 60% of the variation of respiration in the light, measured at 1 to 40 μg L−1 of chlorophyll a (Chla), could be explained by the variations of gross production. Secondly, the relative contribution of bacterial respiration to community respiration in the light represented up to 79% at low Chla (1 μg L−1) and was negatively correlated with Chla concentration. Although bacterial production and bacterial respiration were both enhanced in the light, bacterial respiration in the light was more stimulated than bacterial production, which resulted in a decrease in bacterial growth efficiency during light exposure. These results show that the impact of light on the functioning of the microbial loop needs to be taken into account for a better understanding of the oceanic carbon cycle.  相似文献   

8.
9.
10.
This paper discusses an extension of the classical resource-constrained project scheduling problem in which the resource availability as well as the resource request of the activities may change from period to period. While the applicability of this extension should be obvious, we provide a case study in order to emphasize the need for the extension. A real-world medical research project is presented which has a structure that is typical for many other medical and pharmacological research projects that consist of experiments. Subsequently, we provide a mathematical model and analyze some properties of the extended problem setting. We also introduce a new priority rule heuristic that is based on a randomized activity selection mechanism which makes use of so-called tournaments. Finally, we report our computational results for the original data of the medical research project as well as for a set of systematically generated test instances.  相似文献   

11.
12.
13.
Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences.  相似文献   

14.
As of now, a dental surgeon and a maxillofacial surgeon face a problem in choosing the optimal treatment of extensive cavitary masses in the maxillary bones. A detailed study of the characteristic x-ray manifestations of large jaw bone cavities makes it possible to give an insight into the pattern and extension rate of a destructive process, to choose the most optimal surgical treatment, and to yield more predictable results. The aim of this investigation was to analyze the morphological characteristics of large odontogenic cysts in the jaw bones and to reveal the main specific features of their x-ray picture in relation to their histological structure. An x-ray study determines the location, sizes, shape, and structure of the shadow of a cavity, its relation to the adjacent anatomic masses, as well as bone swelling, and preserved cortical laminae and facilitates the most correct presumptive diagnosis.  相似文献   

15.
This study investigates the three-dimensional structure of the eight plate exoskeletal (shell) assembly of the chiton Tonicella marmorea. X-ray micro-computed tomography and 3D printing elucidate the mechanism of conformational change from a passive (slightly curved, attached to surface) to a defensive (rolled, detached from surface) state of the plate assembly. The passive and defensive conformations exhibited differences in longitudinal curvature index (0.43 vs. 0.70), average plate-to-plate overlap (~62% vs. ~48%), cross-sectional overlap heterogeneity (60-82.5% vs. 0-90%, fourth plate), and plate-to-plate separation distance (100% increase in normalized separation distance between plates 4 and 5), respectively. The plate-to-plate interconnections consist of two rigid plates joined by a compliant, actuating muscle, analogous to a geometrically structured shear lap joint. This work provides an understanding of how T. marmorea achieves the balance between mobility and protection. In the passive state, the morphometry of the plates and plate-to-plate interconnections results in an approximately continuous curvature and constant armor thickness, resulting in limited mobility but maximum protection. In the defensive state, the underlying soft tissues gain protection and the chiton gains mobility through tidal flow, but regions of vulnerability open dorsally, due to the increase in plate-to-plate separation and decrease in plate-to-plate overlap. Lastly, experiments using optical and scanning electron microscopy, mercury porosimetry, and Fourier-transform infrared spectroscopy explore the microstructure and spatial distribution of the six layers within the intermediate plates, the role of multilayering in resisting predatory attacks, and the detection of chitin as a major component of the intra-plate organic matrix and girdle.  相似文献   

16.
It is shown that nicotinamide-induced in vivo stimulation of NAD biosynthesis in the liver nuclei of rats causes a decrease of the DNA sensitivity to treatment with DNAse I under conditions of weak hydrolysis. When rats are given synthetic vitamin PP-deprived food, the NAD level in the liver falls down to 40% and a great number of DNAse I-hypersensitive chromatin sites appear. A 24% decrease in the level of poly-ADP-ribosylation of total histones in comparison with the control has been observed with hypovitaminosis. Under conditions of vitamin PP deficiency nicotinamide administered to animals has increased the 14C NAD incorporation into histones 2 times (as compared with the control). These variations occur primarily due to increase of the label incorporation to histone H1. Fractionation of chromatin by solutions of different ionic strength has confirmed that vitamin PP deficiency and NAD amount decrease in the liver are accompanied by a relative increase of the NAD-pyrophosphorylase and poly-ADP-ribose polymerase activities in the fraction extracted by the low ionic solution.  相似文献   

17.
The effect of varying polyglutamate chain length on local and global stability of horse heart ferricytochrome c was studied using scanning calorimetry and spectroscopy methods. Spectral data indicate that polyglutamate chain lengths equal or greater than eight monomer units significantly change the apparent pK(a) for the alkaline transition of cytochrome c. The change in pK(a) is comparable to the value when cytochrome c is complexed with cytochrome bc(1). Glutamate and diglutamate do not significantly alter the temperature transition for cleavage of the Met(80)-heme iron bond of cytochrome c. At low ionic strength, polyglutamates consisting of eight or more glutamate monomers increase midpoint of the temperature transition from 57.3+/-0.2 to 66.9+/-0.2 degrees C. On the other hand, the denaturation temperature of cytochrome c decreases from 85.2+/-0.2 to 68.8+/-0.2 degrees C in the presence of polyglutamates with number of glutamate monomers n >or approximately equal 8. The rate constant for cyanide binding to the heme iron of cytochrome c of cytochrome c-polyglutamate complex also decreases by approximately 42.5% with n>or approximately equal 8. The binding constant for the binding of octaglutamate (m.w. approximately 1000) to cyt c was found to be 1.15 x 10(5) M(-1) at pH 8.0 and low ionic strength. The results indicate that the polyglutamate (n>or approximately equal 8) is able to increase the stability of the methionine sulfur-heme iron bond of cytochrome c in spite of structural differences that weaken the overall stability of the cyt c at neutral and slightly alkaline pH.  相似文献   

18.
Transtibial amputation prosthetic-users are at risk of developing deep tissue injury (DTI) while donning their prosthesis for prolonged periods; however, no study addresses the mechanical loading of the residuum during sitting with a prosthesis. We combined MRI-based 3D finite element modelling of a residuum with an injury threshold and a muscle damage law to study risks for DTI in one sitting subject in two postures: 30°-knee-flexion vs. 90°-knee-flexion. We recorded skin-socket pressures, used as model boundary conditions. During the 90°-knee-flexion simulations, major internal muscle injuries were predicted (>1000 mm3). In contrast, the 30°-knee-flexion simulations only produced minor injury ( < 14 mm3). Predicted injury rates at 90°-knee-flexion were over one order of magnitude higher than those at 30°-knee-flexion. We concluded that in this particular subject, prolonged 90°-knee-flexion sitting theoretically endangers muscle viability in the residuum. By expanding the studies to large subject groups, this research approach can support development of guidelines for DTI prevention in prosthetic-users.  相似文献   

19.
20.
Pattern of Respiration of a Perennial Ryegrass Crop in the Field   总被引:3,自引:0,他引:3  
‘Dark’ respiratory losses of CO2 were measured ona one year old sward of S24 perennial ryegrass (Lolium perenneL.) at intervals during a 74 day reproductive growth period,between April and June, and a 21 day vegetative growth period,in July and August. Part of the sward was shaded for one weekbefore measure ments commenced. Measurements of ‘dark’respiration continued for 46 hand it was possible to distinguishtwo components which are designated ‘maintenance’and ‘synthetic’ ‘Maintenance’ respiration was taken to be the meanrate of CO2 efflux after 40–46 h darkness. When calculatedon a plant d. wt basis at 15°C it ranged between 6 to 32mgCO2 g-1 day-1 during reproductive growth and 10–14 mgCO2 g-1 day-1 during vegetative growth. During reproductivegrowth, sward protein content ranged between 7–23 percent and when maintenance respiration was recalculated on thebasis of protein content it changed relatively little throughoutthe growth period (90–140 mg CO2 g pro tein-1 day-1);the value for vegetative growth ranged between 70–100mgCO2 g protein-day-1. Total ‘synthetic’ CO2 flux was determined duringreproductive growth and a rate of ‘synthetic’ CO2flux was determined during both reproductive and vegetativegrowth. Between 15 and 35 per cent of the CO2 fixed in the previousphotoperiod was lost in ‘synthetic’ respirationof above-ground material in reproductive swards. Previous shadingincreased the proportion of ‘synthetic’ CO2 lossfrom above ground. The rate of ‘synthetic’ CO2 outputduring the first hours of darkness increased with amount ofCO2 fixed in the previous photoperiod, although it was not proportionalto it. There is some evidence that assimilate is ‘carried-over’from one photoperiod to the next.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号