首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.  相似文献   

2.
3.
Natural killer cells are important players of the innate immunity. In humans, they express HLA-class I-specific inhibitory receptors including the allotypic-specific KIR and various activating receptors. In most instances, in an autologous setting NK cells do not kill self cells. In contrast, in an allogeneic setting as the haploidentical hematopoietic stem cell transplantation to cure high risk leukemias, donor-derived NK cells may express inhibitory KIR that are not engaged by the HLA-class I alleles (KIR ligands) expressed by recipient cells. Such "alloreactive" NK cells may be responsible for the eradication of leukemia blasts escaping the preparative regimen, residual host dendritic cells and T lymphocytes, thus preventing leukemia relapse, GvHD and graft rejection, respectively. These NK-mediated effects result in a sharp improvement of the estimated 5 years survival.  相似文献   

4.
Donor NK cells could promote engraftment by suppressing host alloreactive responses during allogeneic bone marrow transplantation (allo-BMT). The biological activity of NK cells could be significantly enhanced by IL-15. The current study attempted to evaluate the effect of donor NK cells and IL-15 administration on engraftment and immune reconstitution in a murine nonmyeloablative allo-BMT model. Mice infused with donor NK cells and treated with IL-15 during nonmyeloablative allo-BMT resulted in increased donor engraftment compared with either treatment alone. The number of donor-derived cell subsets also increased in the spleen of the recipient mice with combination treatment. The alloreactivity to donor type Ags was significantly reduced in the recipient mice with donor NK cell infusion and IL-15 treatment, which was manifested by decreased proliferation and IL-2 secretion of splenocytes from recipient mice in response to donor type Ags in MLR and decreased capacity of the splenocytes killing donor type tumor targets. We subsequently exposed recipient mice to reduced irradiation conditioning and showed that donor NK cell infusion and hydrodynamic injection-mediated IL-15 expression could synergistically promote donor engraftment and suppress alloreactivity during nonmyeloablative allo-BMT. Infusion of CFSE-labeled donor CD45.1(+) NK cells demonstrated that IL-15 could enhance the infused donor NK cell proliferation and function in vivo. IL-15 treatment also promoted donor bone marrow-derived NK cell development and function. Thus, donor NK cell infusion and IL-15 treatment could synergistically promote the engraftment and the development of donor-derived cell subsets and suppress the host alloresponse in a murine nonmyeloablative allo-BMT model.  相似文献   

5.

Background

HLA-C is an important ligand for killer immunoglobulin like receptors (KIR) that regulate natural killer (NK) cell function. Based on KIR specificity HLA-C molecules are allocated into two groups, HLA-C1 or HLA-C2; HLA-C2 is more inhibiting to NK cell function than HLA-C1. We studied the clinical importance of HLA-C genotypes on the long-term graft survival of 760 kidney transplants performed at our centre utilising a population based genetic study and cell culture model to define putative mechanisms.

Methods and Findings

Genotyping was performed using conventional DNA PCR techniques and correlations made to clinical outcomes. We found that transplant recipients with HLA-C2 had significantly better long-term graft survival than transplant recipients with HLA-C1 (66% versus 44% at 10 years, log-rank p = 0.002, HR = 1.51, 95%CI = 1.16–1.97). In in-vitro NK and dendritic cell (DC) co-culture model we made several key observations that correlated with the population based genetic study. We observed that donor derived NK cells, on activation with IL-15, promoted differential HLA-C genotype dependent DC maturation. In NK-DC co-culture, the possession of HLA-C2 by DC was associated with anti-inflammatory cytokine production (IL-1RA/IL-6), diminished DC maturation (CD86, HLA-DR), and absent CCR7 expression. Conversely, possession of HLA-C1 by DC was associated with pro-inflammatory cytokine synthesis (TNF-α, IL-12p40/p70), enhanced DC maturation and up-regulation of CCR7 expression. By immunohistochemistry the presence of donor NK cells was confirmed in pre-transplant kidneys.

Conclusions

We propose that after kidney transplantation IL-15 activated donor derived NK cells interact with recipient DC with less activation of indirect allo-reactivity in HLA-C2 positive recipients than HLA-C1 positive recipients; this has implications for long-term graft survival. Early events following kidney transplantation involving NK-DC interaction via KIR and HLA-C immune synapse may have a central role in long-term kidney transplant outcomes.  相似文献   

6.
Genetic control of human NK cell repertoire   总被引:28,自引:0,他引:28  
Through differential killer cell Ig-like receptor (KIR) and CD94:NKG2 gene expression, human NK cells generate diverse repertoires, each cell having an inhibitory receptor for autologous HLA class I. Using a new method for measuring repertoire difference that integrates multiple flow cytometry parameters, we found individual repertoire stability, but population variability. Correlating repertoire differences with KIR and HLA genotype for 85 sibling pairs reveals the dominant influence of KIR genotype; HLA genotype having a subtle, modulating effect on relative KIR expression frequencies. HLA and/or KIR genotype also influences CD94:NKG2A expression. After HLA-matched stem cell transplantation, KIR repertoires either recapitulated that of the donor or were generally depressed for KIR expression. Human NK cell repertoires are defined by combinations of variable KIR and HLA class I genes and conserved CD94:NKG2 genes.  相似文献   

7.
Stem cell transplantation across HLA barriers may trigger NK cell-mediated graft-vs-leukemia effects leading to improved survival for patients with hematological malignancies. However, the genetic algorithm based on killer cell Ig-like receptor (KIR) and HLA genes used to predict NK cell alloreactivity have yielded discrepant results. Accordingly, it has been difficult to define transplantation settings that favor NK cell alloreactivity. In this study, we have used multiparameter flow cytometry to simultaneously analyze the cell surface expression of all four major inhibitory KIR and CD94/NKG2A to determine the size of the alloreactive NK cell repertoires in 31 individuals homozygous for the group A KIR haplotype. We observed a vast variability in the frequencies of cells with an alloreactive potential, ranging from 0 to 62% of the total NK cell population depending on which, and how many, KIR ligands were missing in theoretical recipients. This analysis required a functional examination of KIR3DL2-single positive NK cells, showing that this subset was hyporesponsive in individuals harboring the cognate ligands HLA-A3/A11. The results provide new insights into the variability of the functional alloreactive NK cell repertoire and have implications for donor selection in hematopoietic stem cell transplantation and adoptive NK cell-based immunotherapy.  相似文献   

8.
Immunologic and clinical aspects of natural killer cells in human leukemia   总被引:1,自引:0,他引:1  
We have studied peripheral-blood, splenic and bone marrow natural killer (NK) activity in patients with leukemia. These studies demonstrated that leukemic patients displayed defective NK activity in all of these tissues. However, NK defect could be corrected by culture of effector cells with interleukin-2 (IL-2). The phenotypic analysis of IL-2 cultures showed clearly the heterogeneity of lymphocyte subsets. The characterization studies demonstrated that CD56+, CD3- NK cells manifested most potent lysis of leukemia, CD56+, CD3+ T cells mediated some, but low, antileukemia activity and CD56-, CD3+ T lymphocytes were devoid of cytotoxicity.  相似文献   

9.
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions.  相似文献   

10.
In an ongoing clinical phase I/II study, 16 pediatric patients suffering from high risk leukemia/tumors received highly purified donor natural killer (NK) cell immunotherapy (NK-DLI) at day (+3) +40 and +100 post haploidentical stem cell transplantation. However, literature about the influence of NK-DLI on recipient's immune system is scarce. Here we present concomitant results of a noninvasive in vivo monitoring approach of recipient's peripheral blood (PB) cells after transfer of either unstimulated (NK-DLI(unstim)) or IL-2 (1000 U/ml, 9-14 days) activated NK cells (NK-DLI(IL-2 stim)) along with their ex vivo secreted cytokine/chemokines. We performed phenotypical and functional characterizations of the NK-DLIs, detailed flow cytometric analyses of various PB cells and comprehensive cytokine/chemokine arrays before and after NK-DLI. Patients of both groups were comparable with regard to remission status, immune reconstitution, donor chimerism, KIR mismatching, stem cell and NK-DLI dose. Only after NK-DLI(IL-2 stim) was a rapid, almost complete loss of CD56(bright)CD16(dim/-) immune regulatory and CD56(dim)CD16(+) cytotoxic NK cells, monocytes, dendritic cells and eosinophils from PB circulation seen 10 min after infusion, while neutrophils significantly increased. The reduction of NK cells was due to both, a decrease in patients' own CD69(-) NCR(low)CD62L(+) NK cells as well as to a diminishing of the transferred cells from the NK-DLI(IL-2 stim) with the CD56(bright)CD16(+/-)CD69(+)NCR(high)CD62L(-) phenotype. All cell counts recovered within the next 24 h. Transfer of NK-DLI(IL-2 stim) translated into significantly increased levels of various cytokines/chemokines (i.e. IFN-γ, IL-6, MIP-1β) in patients' PB. Those remained stable for at least 1 h, presumably leading to endothelial activation, leukocyte adhesion and/or extravasation. In contrast, NK-DLI(unstim) did not cause any of the observed effects. In conclusion, we assume that the adoptive transfer of NK-DLI(IL-2 stim) under the influence of ex vivo and in vivo secreted cytokines/chemokines may promote NK cell trafficking and therefore might enhance efficacy of immunotherapy.  相似文献   

11.
12.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

13.
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.  相似文献   

14.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

15.
Killer Ig-like receptors (KIR) and HLA class I ligands were studied in unrelated hemopoietic stem cell transplantation for chronic myeloid leukemia (n = 108). Significantly improved overall survival was observed in patients, which were homozygous for HLA-C-encoded group 1 (C1) ligands compared with those with group 2 (C2) ligands. Favorable outcome in the former patient group was an early effect that was highly significant in patients transplanted with G-CSF-mobilized peripheral blood and patients with advanced disease stages. In contrast, presence of C1 ligands in the donor was associated with significantly reduced patient survival. The differential roles of the two HLA-C ligands are explained in the context of a biased NK cell reconstitution, which is generally dominated by the presence of C1- but absence of C2-specific NK cells. The clinical observations are corroborated by in vitro experiments showing that NK cells derived from hemopoietic progenitor cells generally acquire the C1-specific inhibitory KIR2DL2/3 at earlier time points and with higher frequency than the C2-specific KIR2DL1. These findings define a novel determinant for understanding the role of NK cells in clinical hemopoietic stem cell transplantation.  相似文献   

16.
NKT cells are a unique immunoregulatory T cell population that produces large amounts of cytokines. We have investigated whether stimulation of host NKT cells could modulate acute graft-vs-host disease (GVHD) in mice. Injection of the synthetic NKT cell ligand alpha-galactosylceramide (alpha-GalCer) to recipient mice on day 0 following allogeneic bone marrow transplantation promoted Th2 polarization of donor T cells and a dramatic reduction of serum TNF-alpha, a critical mediator of GVHD. A single injection of alpha-GalCer to recipient mice significantly reduced morbidity and mortality of GVHD. However, the same treatment was unable to confer protection against GVHD in NKT cell-deficient CD1d knockout (CD1d(-/-)) or IL-4(-/-) recipient mice or when STAT6(-/-) mice were used as donors, indicating the critical role of host NKT cells, host production of IL-4, and Th2 cytokine responses mediated by donor T cells on the protective effects of alpha-GalCer against GVHD. Thus, stimulation of host NKT cells through administration of NKT ligand can regulate acute GVHD by inducing Th2 polarization of donor T cells via STAT6-dependent mechanisms and might represent a novel strategy for prevention of acute GVHD.  相似文献   

17.
NK cells and dendritic cells (DCs) are both important in the innate host defense. However, the role of DCs in NK cell-mediated cytotoxicity is unclear. In this study, we designed two culture systems in which human cord blood CD34(+) cells from the same donor were induced to generate NK cells and DCs, respectively. Coculture of the NK cells with DCs resulted in significant enhancement of NK cell cytotoxicity and IFN-gamma production. However, NK cell cytotoxicity and IFN-gamma production were not increased when NK cells and DCs were grown together separated by a transwell membrane. Functional studies demonstrated that 1) concanamycin A, a selective inhibitor of perforin/granzyme B-based cytolysis, blocked DC-stimulated NK cytotoxicity against K562 cells; and 2) neutralizing mAb against Fas ligand (FasL) significantly reduced DC-stimulated NK cytotoxicity against Fas-positive Jurkat cells. In addition, a marked increase of FasL mRNA and FasL protein expression was observed in DC-stimulated NK cells. The addition of neutralizing mAb against IL-18 and IL-12 significantly suppressed DC-stimulated NK cell cytotoxicity. Neutralizing IFN-gamma Ab almost completely inhibited NK cell cytotoxicity against Jurkat cells. These observations suggest that DCs enhance NK cell cytotoxicity by up-regulating both perforin/granzyme B- and FasL/Fas-based pathways. Direct interaction between DCs and NK cells is necessary for DC-mediated enhancement of NK cell cytotoxicity. Furthermore, DC-derived IL-18 and IL-12 were involved in the up-regulation of NK cell cytotoxicity, and endogenous IFN-gamma production plays an important role in Fas-mediated cytotoxicity.  相似文献   

18.
19.
It was previously shown that chronic myeloid leukemia (CML) patients transplanted with peripheral blood progenitor cells (PBPC) from HLA-C allele-matched donors had better clinical outcome when lacking the HLA-C-encoded KIR epitope C2. We investigated whether this holds true in other diseases and in HLA-C allele-mismatched patients. Twenty-four myelodysplastic syndrome (MDS), 39 acute myeloid leukemia (AML)/CML, and 34 acute lymphoblastic leukemia/non-Hodgkin lymphoma patients received unrelated unmanipulated PBPC. HLA matching was analyzed retrospectively (including DNA-based direct sequencing of HLA-C). Only in AML/CML, the C2 ligand was associated with impaired overall survival (OS, p?<?0.05). We next calculated the impact of donor/recipient HLA-C allele matching within the C1 and C2 groups. Surprisingly, AML/CML and MDS patients with C2 ligands profited from HLA-C allele mismatching (OS, p?<?0.01), whereas in the C1 group, allele matching was beneficial (p?<?0.05). HLA-C allele mismatching in the C2 KIR ligand group was associated with lower TRM (OR 0.48, p?<?0.009) and lower relapse rate (OR 2.7 p?<?0.1) when compared to allele-matched C2 patients. Thus, patients could be assigned to a low- and a high-risk group according to their C1/C2 ligand status and the HLA-C allele matching degree. These data suggest that four-digit allele matching of HLA-C has differential effects dependent on the presence of C1 and C2 KIR epitopes in the patient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号