首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We examine the effect of cooling upon the freeze-etch ultrastructure of nuclear membranes, as well as upon nucleocytoplasmic RNA transport in the unicellular eukaryote Tetrahymena pyriformis. Chilling produces smooth, particle-free areas on both faces of the two freeze-fractured macronuclear membranes. Upon return to optimum growth temperature the membrane-associated particles revert to their normal uniform distribution and the smooth areas disappear. Chilling lowers the incorporation of [14C]uridine into whole cells and their cytoplasmic RNA. Cooling from the optimum growth temperature of 28° to 18°C (or above) decreases [14C]uridine incorporation into cells more than into their cytoplasmic RNA; chilling to below 18°C but above 10°C causes the reverse. [14C]Uridine incorporation into whole cells and their cytoplasmic RNA reflects overall RNA synthesis and nucleocytoplasmic RNA transport, respectively. RNA transport decreases strongly between 20° and 16°C, which is also the temperature range where morphologically detectable nuclear membrane transitions occur. This suggests that the nuclear envelope limits the rate of nucleocytoplasmic RNA transport at low temperatures. We hypothesize that a thermotropic lipid phase transition switches nuclear pore complexes from an "open" to a "closed" state with respect to nucleocytoplasmic RNA transport.  相似文献   

2.
Effect of Chilling Temperatures upon Cell Cultures of Tomato   总被引:7,自引:7,他引:0       下载免费PDF全文
The effect of chilling temperatures upon cell cultures of tomato (Lycopersicon esculentum Mill cv `VF36,' and cv `VFNT Cherry,' and L. hirsutum Humb. & Bonpl.) was tested. Doubling times for L. esculentum were 2 to 3 days at 28°C, and 3 to 8 days at 12°C. No growth was observed at 8°C, indicating an abrupt limit to growth between 8 and 12°C. Fluorescein diacetate staining indicated that 80 to 90% of the cells were alive when cells were maintained at 8°C for up to 2 weeks. When cultures kept at 8°C for up to 30 days were transferred to 28°C, growth resumed quickly, and at a rate virtually identical to that for unchilled cells. Similar results were found for cells maintained at 0°C, and for cells of `VFNT Cherry' and of L. hirsutum. Under certain conditions, cultures slowly doubled in fresh weight and cell volume at 8 or 9°C but additional growth at 8°C did not occur, nor could growth be maintained by subculture at 8 or 9°C. The results are contrary to reports that cell cultures of tomato die when exposed to temperatures below 10°C for 1 or 2 weeks. Our observations indicate that chilling temperatures quickly inhibit growth of tomato cells, but do not kill them.  相似文献   

3.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37°C and pressure treated at 15°C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15°C and pressure treated at 37°C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

4.
Experiments comparing the photosynthetic responses of a chilling-resistant species (Pisum sativum L. cv Alaska) and a chilling-sensitive species (Cucumis sativus L. cv Ashley) have shown that cucumber photosynthesis is adversely affected by chilling temperatures in the light, while pea photosynthesis is not inhibited by chilling in the light. To further investigate the site of the differential response of these two species to chilling stress, thylakoid membranes were isolated under various conditions and rates of photosynthetic electron transfer were determined. Preliminary experiments revealed that the integrity of cucumber thylakoids from 25°C-grown plants was affected by the isolation temperature; cucumber thylakoids isolated at 5°C in 400 millimolar NaCl were uncoupled, while thylakoids isolated at room temperature in 400 millimolar NaCl were coupled, as determined by addition of gramicidin. The concentration of NaCl in the homogenization buffer was found to be a critical factor in the uncoupling of cucumber thylakoids at 5°C. In contrast, pea thylakoid membranes were not influenced by isolation temperatures or NaCl concentrations. In a second set of experiments, thylakoid membranes were isolated from pea and cucumber plants at successive intervals during a whole-plant light period chilling stress (5°C). During wholeplant chilling, thylakoids isolated from cucumber plants chilled in the light were uncoupled even when the membranes were isolated at warm temperatures. Pea thylakoids were not uncoupled by the whole-plant chilling treatment. The difference in integrity of thylakoid membrane coupling following chilling in the light demonstrates a fundamental difference in photosynthetic function between these two species that may have some bearing on why pea is a chilling-resistant plant and cucumber is a chilling-sensitive plant.  相似文献   

5.
Murata N  Yamaya J 《Plant physiology》1984,74(4):1016-1024
Seven major lipid classes were isolated from leaves of chilling-sensitive and chilling-resistant plants, and the temperature-dependent phase behaviors of their aqueous dispersions were studied by a fluorescence polarization method using trans-parinaric acid and its methyl ester. Phosphatidylglycerols from the chilling-sensitive plants went from the liquid crystalline state into the phase separation state at about 30°C in 100 mm NaCl and at about 40°C in 5 mm MgCl2. In contrast, phosphatidylglycerols from the chilling-resistant plants went into the phase separation state at a much lower temperature. The other classes of lipids remained in the liquid crystalline state at all temperatures between 5°C and 40°C regardless of the chilling sensitivity of the plants, except sulfoquinovosyl diacylglycerol from sponge cucumber in which phase separation seemed to begin at about 15°C. Compositions and positional distributions of fatty acids of the lipids suggest that the phosphatidylglycerols from the chilling-sensitive plants, but no other lipids, contained large proportions of molecular species which undergo phase transition at room temperature or above. The thermotropic phase behaviors and the fatty acid compositions suggest that, among the major lipid classes from leaves of the chilling-sensitive plants, only phosphatidylglycerol can induce a phase transition. Since a major part of this lipid in leaves originates from the chloroplasts, phase transition probably occurs in the chloroplast membranes.  相似文献   

6.
Endogenous abscisic acid levels and induced heat shock proteins were measured in tissue exposed for 6 hours to temperatures that reduced their subsequent chilling sensitivity. One-centimeter discs excised from fully expanded cotyledons of 11-day-old seedlings of cucumber (Cucumis sativus L., cv Poinsett 76) were exposed to 12.5 or 37°C for 6 hours followed by 4 days at 2.5 or 12.5°C. Ion leakage, a qualitative indicator of chilling injury, increased after 2 to 3 day exposure to 2.5°C, but not to 12.5°C, a nonchilling temperature. Exposure to 37°C before chilling significantly reduced the rate of ion leakage by about 60% compared to tissue exposed to 12.5°C before chilling, but slightly increased leakage compared to tissue exposed to 12.5 or 37°C and held at the nonchilling temperature of 12.5°C. There was no relationship between abscisic acid content following exposure to 12.5 or 37°C and chilling tolerance. Five heat shock proteins, with apparent molecular mass of 25, 38, 50, 70, and 80 kilodaltons, were induced by exposure to 37 or 42°C for 6 hours, and their appearance coincided with increased chilling resistance. Heat shock treatments reduced the synthesis of three proteins with apparent molecular mass of 14, 17, and 43 kilodaltons. Induction of heat shock proteins could be a possible cause of reduced chilling injury in tissue exposed to 37 or 42°C.  相似文献   

7.
Proton transport activities in isolated tonoplast vesicles were measured as quenching of fluorescence of acridine orange. A marked difference in the temperature dependency of two types of tonoplast proton transports, i.e. ATP- and pyrophosphate-driven, was observed between two leguminous plants sensitive (mung bean, Vigna radiata [L.] Wilczek) and insensitive (pea, Pisum sativum L.) to chilling. In tonoplast vesicles isolated from hypcotyls of mung bean seedlings that were germinated for 3.5 days at 26°C in the dark, the total amount of fluorescence quenching at the steady state in both types of proton pumps, as a measurement of the inside-acidic pH gradient across the membrane vesicles, was markedly suppressed under temperatures below 10°C. In tonoplast vesicles isolated from epicotyls of pea seedlings, which were germinated for 7 days at 18° to 23°C in the dark, no suppression occurred in the formations of the pH gradient in either type of proton pump, even at 0°C. The cause of the low temperature-induced suppression of the proton pumps in mung bean tonoplasts seems to be not an increased permeability of the membrane vesicles to protons or accompanying anions and cations, but instead a marked inhibition in the catalytic activity of both enzymes under low temperatures.  相似文献   

8.
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0°C, 10°C, 17°C, and 27°C in moderate light. At 27°C, the sodB and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB strain was more sensitive to chilling stress at 17°C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB strains exhibited similar chilling damage at 0°C and 10°C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB strain than in the wild type at 17°C and 27°C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0°C.  相似文献   

9.
Steffen KL  Palta JP 《Plant physiology》1989,91(4):1558-1561
The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling temperature than does S. tuberosum cv Red Pontiac, a frost-sensitive cultivated species.  相似文献   

10.
The membrane composition of Zymomonas mobilis changed dramatically in response to growth temperature. With increasing temperature, the proportion of vaccenic acid declined with an increase in myristic acid, the proportion of phosphatidylcholine and cardiolipin increased with decreases in phosphatidylethanolamine and phosphatidylglycerol, and the phospholipid/protein ratio of the membrane declined. These changes in membrane composition were correlated with changes in thermal tolerance and with changes in membrane fluidity. Cells grown at 20°C were more sensitive to inactivation at 45°C than were cells grown at 30°C, as expected. However, cells grown at 41°C (near the maximal growth temperature for Z. mobilis) were hypersensitive to thermal inactivation, suggesting that cells may be damaged during growth at this temperature. When cells were held at 45°C, soluble proteins from cells grown at 41°C were rapidly lost into the surrounding buffer in contrast to cells grown at lower temperatures. The synthesis of phospholipid-deficient membranes during growth at 41°C was proposed as being responsible for this increased thermal sensitivity.  相似文献   

11.
In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.  相似文献   

12.
The temperature boundary for phase separation of membrane lipids extracted from Nerium oleander leaves was determined by analysis of spin label motion using electron spin resonance spectroscopy and by analysis of polarization of fluorescence from the probe, trans-parinaric acid. A discontinuity of the temperature coefficient for spin label motion, and for trans-parinaric acid fluorescence was detected at 7°C and −3°C with membrane lipids from plants grown at 45°C/32°C (day/night) and 20°C/15°C, respectively. This change was associated with a sharp increase in the polarization of fluorescence from trans-parinaric acid indicating that significant domains of solid lipid form below 7°C or −3°C in these preparations but not above these temperatures. In addition, spin label motion indicated that the lipids of plants grown at low temperatures are more fluid than those of plants grown at higher temperatures.

A change in the molecular ordering of lipids was also detected by analysis of the separation of the hyperfine extrema of electron spin resonance spectra. This occurred at 2°C and 33°C with lipids from the high and low temperature grown plants, respectively. According to previous interpretation of spin label data the change at 29°C (or 33°C) would have indicated the temperature for the initiation of the phase separation process, and the change at 7°C (or −3°C) its completion. Because of the present results, however, this interpretation needs to be modified.

Differences in the physical properties of membrane lipids of plants grown at the hot or cool temperatures correlate with differences in the physiological characteristics of plants and with changes in the fatty acid composition of the corresponding membrane lipids. Environmentally induced modification of membrane lipids could thus account, in part, for the apparently beneficial adjustments of physiological properties of this plant when grown in these regimes.

  相似文献   

13.
The cabbage butterfly, Pieris melete hibernates and aestivates as a diapausing pupa. We present evidence that the optimum of low temperature and optimal chilling periods for both summer and winter diapause development are based on a similar mechanism. Summer or winter diapausing pupae were exposed to different low temperatures of 1, 5, 10 or 15°C for different chilling periods (ranging from 30 to 120 d) or chilling treatments started at different stages of diapause, and were then transferred to 20°C, LD12.5∶11.5 to terminate diapause. Chilling temperature and duration had a significant effect on the development of aestivating and hibernating pupae. The durations of diapause for both aestivating and hibernating pupae were significantly shorter when they were exposed to low temperatures of 1, 5 or 10°C for 50 or 60 days, suggesting that the optimum chilling temperatures for diapause development were between 1 and 10°C and the required optimal chilling period was about 50–60 days. Eighty days of chilling was efficient for the completion of both summer and winter diapause. When chilling periods were ≥90 days, the durations of summer and winter diapause were significantly lengthened; however, the adult emergence was more synchronous. The adaptive significance of a similar mechanism on summer and winter diapause development is discussed.  相似文献   

14.
Microsomal ω-3 fatty acid desaturase catalyzes the conversion of 18:2 (linoleic acid) to 18:3 (α-linolenic acid) in phospholipids, which are the main constituents of extrachloroplast membranes. Transgenic tobacco (Nicotiana tabacum) plants with increased 18:3 contents (designated SIIn plants) were produced through the introduction of a construct with the tobacco microsomal ω-3 fatty acid desaturase gene under the control of the highly efficient promoter containing the E12Ω sequence. 18:3 contents in the SIIn plants were increased by about 40% in roots and by about 10% in leaves compared with the control plants. With regard to growth at 15°C and 25°C and the ability to tolerate chilling at 1°C and 5°C, there were no discernible differences between the SIIn and the control plants. Freezing tolerance in leaves and roots, which was assessed by electrolyte leakage, was almost the same between the SIIn and the control plants. The fluidity of plasma membrane from the SIIn plants was almost the same as that of the control plants. These results indicate that an increase in the 18:3 level in phospholipids is not directly involved in compensation for the diminishment in growth or membrane properties observed under low temperatures.  相似文献   

15.
Plasma membrane was isolated in a uniform population and with a high purity from chilling-sensitive etiolated young seedlings of Vigna radiata (mung bean) utilizing an aqueous two polymer phase separation system and subsequent sucrose density gradient. The isolated plasma membrane was associated with vanadate-sensitive and KNO3-insensitive ATPase. The ATPase has high specificities both for substrate and Mg2+ ion with optimum pH at 6.5. It was slightly stimulated by monovalent anions, especially Cl. Proton ionophores such as gramicidin D and carbonyl cyanide p-trifluoromethoxyphenylhydrazone did not stimulate the enzyme activity. The ATPase is apparently latent and highly stimulated by the addition of detergents such as Triton X-100. A maximum stimulation was achieved by the addition of 0.02% Triton X-100. After treatment with proteinase K in an isotonic buffer solution, the enzyme activity was less affected, whereas the peptides were specifically digested. Based on these facts, the isolated plasma membrane vesicles appear to be tightly sealed and in a right-side-out orientation. The plasma membrane ATPase had two inflection points at higher (18.9°C) and lower (6.7°C) temperatures on the Arrhenius plots of the activity. The lower inflection temperature apparently coincided with that of the anisotropy parameter of embedded 1,6-diphenyl-1,3,5-hexatriene, indicating that the membrane bound ATPase activity was affected by a phase transition of membrane lipids and/or temperature-dependent conformational changes in the enzyme molecules per se. Considering the fact that the plant material used here is highly sensitive to chilling temperatures and injured severely by exposure to temperatures below 5°C for a relatively short period, the thermotropic properties of membrane molecules are considered to be involved in the mechanism of chilling injury.  相似文献   

16.
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.  相似文献   

17.
Raison JK  Orr GR 《Plant physiology》1986,81(3):807-811
The thermal response of mitochondrial polar lipids from a variety of chilling-sensitive and chilling-insensitive plants was determined by differential scanning calorimetry. A phase transition was observed at 15°C for mitochondria from soybeam (Glycine max. cv Davis) hypocotyl, at 16°C for tomato (Lycopersicon esculentum cv Flora-Dade and cv Grosse Lisse) fruit, at 15°C for cucumber (Cucumus sativus L.) fruit, at 14°C for mung bean (Vigna radiata var Berken) hypocotyl, and at 15°C for sweet potato (Ipomea batatas L.) roots. The transition temperature was not significantly altered by the scan rate and was reversible. Changes in the temperature coefficient of motion for a spin label, intercalated with the polar lipids, occurred at a temperature slightly below that of the phase transition, indicating that the polar lipids phase separate below the transition. No phase transition was observed for mitochondrial polar lipids from barley (Hordeum vulgare) roots, wheat (Triticum aestivum L. cv Falcon) roots, and Jerusalem artichoke (Helianthus tuberosus L.) tubers. The results show that a phase change occurs in the membrane lipids of mitochondria a few degrees above the temperature below which chilling injury is evident in the sensitive species. Thus they are consistent with the hypothesis that sensitivity to chilling injury is related to a temperature-induced alteration in the structure of cell membranes.  相似文献   

18.
Chilling stress is an important constraint for maize seed establishment in the field. In this study, a type of “on-off” thermoresponsive coating agent containing poly (N-isopropylacrylamide-co-butylmethacrylate) (Abbr. P(NIPAm-co-BMA)) hydrogel was developed to improve the chilling tolerance of coated maize seed. The P(NIPAm-co-BMA) hydrogel was synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAm) and butylmethacrylate (BMA). Salicylic acid (SA) was loaded in the hydrogel as the chilling resistance agent. SA-loaded P(NIPAm-co-BMA) was used for seed film-coating of two maize varieties, Huang C (HC, chilling-tolerant) and Mo17 (chilling-sensitive), to investigate the coated seed germination and seedling growth status under chilling stress. The results showed that the hydrogel obtained a phase transition temperature near 12°C with a NIPAM to MBA weight ratio of 1: 0.1988 (w/w). The temperature of 12°C was considered the “on-off” temperature for chilling-resistant agent release; the SA was released from the hydrogel more rapidly at external temperatures below 12°C than above 12°C. In addition, when seedlings of both maize varieties suffered a short chilling stress (5°C), higher concentrations of SA-loaded hydrogel resulted in increased germination energy, germination percentage, germination index, root length, shoot height, dry weight of roots and shoots and protective enzyme activities and a decreased malondialdehyde content in coated maize seeds compared to single SA treatments. The majority of these physiological and biochemical parameters achieved significant levels compared with the control. Therefore, SA-loaded P(NIPAm-co-BMA), a nontoxic thermoresponsive hydrogel, can be used as an effective material for chilling tolerance in film-coated maize seeds.  相似文献   

19.
Xin Z  Li PH 《Plant physiology》1992,99(2):707-711
The induction of chilling tolerance by abscisic acid (ABA) in maize (Zea mays L. cv Black Mexican Sweet) suspension cultured cells was examined. Cell viability during exposure to chilling was estimated by triphenyl tetrazolium chloride reduction immediately after chilling and a filter paper growth assay. Both methods yielded comparable results. Chilling tolerance was induced by transferring 5-day-old cultures (late log phase) to a fresh medium containing ABA (10 to 100 micromolar). The greatest chilling tolerance was achieved with ABA at 100 micromolar. Growth of cells was inhibited at this concentration. After a 7-day exposure to 4°C in the dark, the survival of ABA-treated cells (100 micromolar ABA, 28°C for 24 h in the dark) was sevenfold greater than untreated cells. Effective induction of chilling tolerance was first observed when cells were held at 28°C for 6 hours after adding ABA. No tolerance was induced if the culture was chilled at the inception of ABA treatment. Induction of chilling tolerance was inhibited by cycloheximide. These results indicate that ABA is capable of inducing chilling tolerance when ABA-treated cells are incubated at a warm temperature before exposure to chilling, and this induction requires de novo synthesis of proteins.  相似文献   

20.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号