首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathway of directional movement of chick precardiac mesoderm cells was studied by indirect immunofluorescence and by scanning electron microscopy. Directional movement of the precardiac cells begins at stage 6 from the lateral sides of the embryo at the level of Hensen's node. The cells move anteriorly in an arc to the embryo's midline. By stage 8 the cells arrive at the lateral sides of the anterior intestinal portal and movement ceases. The interval of this directional movement is approximately 10 hr. During migration the precardiac cells are in close association with the underlying endoderm. As migration proceeds, the cells encounter increasing amounts of fibrils in the substratum at the mesoderm-endoderm interface. Concomitant with increasing fibril formation there is an increase in fibronectin (FN) in the heart-forming region. During stage 5 FN first appears in the lateral heart-forming regions and increases in amount during the period of cell migration. By stage 7 a concentration difference of FN is apparent in the lateral regions with more FN cephalad and decreasing amounts caudad. At stages 7 and 8 large amounts of extracellular FN-associated fibrils are observed at the lateral sides of the anterior intestinal portal where the cells stop moving. The precardiac cells moving into this region are oriented perpendicular to the anterior intestinal portal and in close association with these fibrils. There is no evidence that the fibrillar meshwork forming the substratum of the precardiac mesoderm cells is physically oriented as a guide for directional movement. The correlations between FN distribution at the mesoderm-endoderm interface and directional cell movement suggest that the precardiac cells may migrate by haptotaxis, i.e., by moving along the substratum toward areas of greater adhesiveness.  相似文献   

2.
Mainly because of its transparency, the Fundulus gastrula constitutes ideal material for direct study of morphogenetic cell movements in vivo. Marking studies show that deep cells of the germ ring converge toward and enter the embryonic shield, where they undergo extension. Those close to the shield move faster. Analysis of videotapes reveals that all deep cells of the dorsal germ ring move toward the shield. But none moves in a direct line. All meander considerably. Germ ring cells nearer the shield move toward it at a higher net rate than those farther away because they meander less. This suggests that exogenous factors promote their directionality. Cells in the prospective yolk sac adjacent to the germ ring also show net convergence, but they meander more. Directional forces are apparently stronger in the germ ring. Converging deep cells move both by filolamellipodia and, less frequently, by blebs. However, there is very little individual cell movement; all cells are almost always in adhesive contact with other cells in moving cell clusters. Clusters vary constantly in size, continually aggregating with other cells and other clusters and splitting. Filolamellipodial cells show contact inhibition of cell movement. Nevertheless, they move and do so directionally, presumably in part because, as members of cell clusters, much of their movement is passive. They also show intercalation or invasive activity, but, consistent with their contact-inhibiting properties, only when neighboring cells separate and provide free space. Cells moving by blebbing locomotion are non-contact inhibiting and intercalate readily. Cell division continues during convergence. Although this temporarily arrests their movement, the daughter cells soon join in the mass convergent movement.  相似文献   

3.
Cell movements in Fundulus blastoderms during gastrulation were studied utilizing time-lapse cinemicrography and electron microscopy. Time-lapse films reveal that cells of the enveloping layer undulate and sometimes separate briefly but remain together in a cohesive layer. During epiboly, the marginal enveloping layer cells move over the periblast as it expands over the yolk sphere. Movement occurs as a result of ruffled membrane activity of the free borders of the marginal cells. Deep blastomeres become increasingly active during blastula and gastrula stages. Lobopodia project from the blastomeres in blastulae and adhere to other cells in gastrulae, giving the cells traction for movement. Contact specializations are formed by the lateral adjacent plasma membranes of enveloping layer cells. An apical junction is characterized by an intercellular gap of 60–75 A. Below this contact, the plasma membranes are separated by 120 A or more. In mid-gastrulae, cytoplasmic fibrils occur adjacent to some apical junctions, and small desmosomes appear below the apical junction. Septate desmosomes also appear at this time. A junction with an intercellular gap of 60 A occurs between marginal enveloping layer cells and periblast. Contacts between deep blastomeres become numerous in gastrulae and consist of contacts at the crests of surface undulations, short areas of contact in which the plasma membranes are 60 or 120 A apart, and long regions characterized by a 200-A intercellular gap. Lobopodia contact other blastomeres only in gastrulae. These junctions contain a 200-A intercellular space. Some deep blastomeres are in contact with the tips of periblast microvilli. The mechanism of epiboly in Fundulus is discussed and reevaluated in terms of these observations. The enveloping layer is adherent to the margin of the periblast and moves over it as a coherent cellular sheet. Periblast epiboly involves a controlled flow of cytoplasm from the thicker periblast into the thinner yolk cytoplasmic layer with which it is continuous. Deep cells move by adhering to each other, to the inner surface of the enveloping layer, and to the periblast.  相似文献   

4.
Silver nitrate staining of blastoderms of Fundulus heteroclitus gastrulae shows that the number of marginal cells of the enveloping layer (EVL) is reduced from 160 to 25 during epiboly. To determine whether this decrease in the number of marginal cells was due to ingression, cell death, or rearrangement of cells, marginal and submarginal regions of the late gastrula were observed directly by time-lapse cinemicrography. Marginal cells rearrange to occupy submarginal positions by first narrowing their boundary with the external yolk syncytial layer (E-YSL), thus becoming tapered in shape. Then, the narrowed marginal boundary retracts from the E-YSL and moves submarginally in the plane of the epithelium. Concurrently, the marginal cells on both sides come into apposition; no gap or break appears in the circum-apical continuity of the epithelial sheet. Marginal cells leave the margin of the EVL during epiboly at a rate of about six per hour. The rate of movement of the EVL cells with respect to one another is about 0.5 to 1.0 micron/min at 21 degrees C. Submarginal cells rearrange in a similar fashion. Although no protrusive activity was seen at the lateral aspects of rearranging cells, the tapering or narrowing associated with rearrangement was accompanied by formation of microfolds on their apical surfaces, and separating or recently separated submarginal cells form "flowers" of microfolds on their apices adjacent to the site of separation. Morphometric analysis shows that about half the narrowing of the margin of the EVL during epiboly is accounted for by cell rearrangement and the other half by the associated tapering and narrowing. These results suggest that epiboly of the EVL may have an active component as well as a passive one.  相似文献   

5.
Macrophages are multifunctional cells that participate in numerous biological processes; they actively phagocytose foreign particles and cell debris. Embryonic tissue macrophages are present at early stages of mammalian development; their ontogeny and function is still under investigation. Our study used immunohistochemistry and electron microscopy to investigate early rat yolk sac macrophages using mouse antirat macrophage monoclonal antibodies (mAb) Mar 1 and Mar 3 produced by our laboratory. Mar 3 mAb revealed the first emergence of immature macrophages in the rat yolk sac at fetal day nine coinciding with the beginning of yolk sac haemopoiesis that consisted mainly of erythropoiesis, while Mar 1 mAb detected specifically rat yolk sac macrophages at about the 13th to 14th day of gestation. Immunoreactivity against Mar mAbs was mainly located in the yolk sac endodermal cell layer, which may signify endodermal origin of the yolk sac macrophages. Ultrastructurally mature yolk sac macrophages contained numerous endocytic vesicles or vacuoles, well-developed Golgi saccules and many electron dense granules in their cytoplasm and a number of microvillous projections from the cell surface. After establishment of the circulation between yolk sac and embryo, Mar 3 positive cells were also demonstrated inside fetal undifferentiated mesenchymal tissue at fetal day 12. The study demonstrated the first emergence of immature yolk sac macrophages being among the earliest haemopoietic cells formed in mammalian development. Thus, Mar mAbs managed to detect macrophage differentiation antigens through their development early in the rat yolk sac.  相似文献   

6.
Summary During the premetamorphic development of coleopteran telotrophic ovaries the culsters of sister oogonial cells, in which the differentiation of nurse cells and oocytes occurs, are arranged in linear chains. This results from a series of mitoses with the consistent orientation of the spindle parallel to the long axis of the ovariole. As a result of incomplete cytokinesis, the oogonial cells in each sibling cluster are linked to each other by intercellular bridges occupied by fusomes. As a rule, at each cluster division the basal cell (i.e. the oocyte progenitor) starts to divide first. From this cell a wave of mitoses spreads toward the anterior end of the cluster, resulting in a mitotic gradient. It is suggested that the failure of the fusomes in adjacent cells to fuse into one continuous fusome (i.e. polyfusome) allows the spindles to orientate with their long axes parallel to the long axis of the sibling cluster. This would explain why the oogonial divisions in coleopteran telotrophic ovaries generate linear chains of cells rather than the cyst-like arrangement which is typical for polytrophic sibling clusters. Dividing sibling clusters within ovarioles are arranged in bundles. The presence of intercellular bridges between sibling clusters seems to be the underlying cause of this nonrandom distribution of the mitotically active clusters. The transverse bridges have been found to occur between the basal cells as well as between the cells located more anteriorly in adjacent sibling clusters. The transverse bridges are filled with typical fusomes, which in more anterior parts of sibling clusters may fuse with the fusomes of adjacent sister oogonial cells into polyfusomes. The transverse bridges between the basal cells are incorporated in the oocytes. The pattern of sibling cluster formation described in this paper apparently occurs widespread in polyphagous Coleoptera, since it has been found in three relatively distantly related families.  相似文献   

7.
Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.  相似文献   

8.
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.  相似文献   

9.
10.
Different motile blood cells behave in a different way upon spreading on the glass surface. Macrophages pass through all the stages of spreading described for fibroblasts (Vasiliev, Gelfand, 1976); granulocytes are polarized after a short staying in badly spread conditions, lymphocytes are polarized immediately after setting of the glass surface. In relation to the leading edge and the cell nucleus, centrioles in the described cell types are located differently. In macrophages they are mainly in the front or on one side of the nucleus, in granulocytes they lie within the ring-like nucleus, in lymphocytes they are strictly located behind the nucleus in the uropode. In all the cases, however, centrioles are localized in the central region of the cytoplasm. Their location does not appear to be connected with the movement direction of blood cells. The distal ends of the active centrioles are faced to the upper cell surface in the examined cells. It is suggested that the centriole can distinguish the free cell surface and the surface associated with the substrate.  相似文献   

11.
Differentiation of the yolk sac was examined ultrastructurally and cytochemically in late embryonic development of the stick insect Carausius morosus. During migration along the yolk sac, endodermal cells form a discontinuous cell epithelium, leaving wide intercellular channels between neighbouring cell clusters. Within the same cell cluster, cells are all joined by septate junctions. In the proximity of the proctodeum region, intercellular channels are filled with numerous cell debris which are shown to derive from vitellophages undergoing cell lysis. Yolk sacs resolved by gel electrophoresis are shown to release a number of vitellin polypeptides into the culture medium. These are equivalent in molecular weight to those present in the vitellophage yolk granules This observation is consistent with the evidence that the basement lamina may act as a course physical filter, retaining particles larger than colloidal thorium dioxide and allowing free percolation of peroxidase. Differentiating endodermal cells form a microvillar striated border along the apical plasma membrane. A number of vesicular criptae were frequently seen in these differentiating endodermal cells. Electron dense granules released by endodermal cells are suggested to play a role in vitellophage lysis and vitellin release from the enclosed yolk granules.  相似文献   

12.
A continuous cell line was established from an experimentally induced rat yolk sac carcinoma. In the early passages both visceral and parietal yolk sac carcinoma were present (designated L1). When the cell line was reestablished in culture after serial transplantations in rats, only parietal yolk sac carcinoma could be identified (designated L2). This cell line expresses parietal yolk sac endoderm characteristics in that it synthesizes basement membrane components, in particular, laminin, but also entactin, collagen IV, and heparan sulfate proteoglycan. In addition, a noncartilage chondrotin sulfate proteoglycan is synthesized. This rat yolk sac carcinoma cell line L2 will be a valuable model for the study of basement membrane components.  相似文献   

13.
The pattern of migration and motile activity of developing pigment cells of the Mexican axolotl, Ambystoma mexicanum, were analyzed by time-lapse cinemicrography in vivo and in culture. In vivo, melanocytes of dark (D/-) larvae migrate from dorsal to ventral in a highly directional manner. They are elongated and aligned parallel to the direction of migration. Nearly all protrusive activity occurs at their ventral, leading edges. Translocation occurs at a mean rate of 0.7 micron/min and involves alternate or simultaneous advance of the leading and trailing edges of the cell. Indirect evidence suggests that cytoplasmic flow is common. Directional migration occurs in apparent absence of contact between melanocytes. In white (d/d) larvae, protrusive activity is infrequent and the melanocytes move slowly or not at all. Explanted neural crest cells of dark and white larvae attach, spread, and differentiate into melanophores and xanthophores in culture. Individual cultured cells are unbiased in direction of protrusive activity and path of migration. Centrifugal spreading occurs by contacting inhibition of movement. Distribution of protrusive activity, polarity, and contact behavior changes with developmental age in vivo and in culture in ways that may be important in establishing the pigment pattern.  相似文献   

14.
An unifying dualistic system is proposed as control transmembrane mediator for both cell growth and cell movement. In this system, sparsely distributed membrane units containing allosteric protomers act through long-range co-operative phase transitions, to store or release a growth primary stereospecific initiator at the inner membrane surface. Other mosaic distributed membrane units contain movement modulation promoters; their mobility is controlled by a mechanism based on the microfilament-microtubule assemblage hypothesis. The movement inhibition is graded with the spreading of cell-cell contacts, while the growth control is an all-or-none effect depending on critical level of environmental factors. It is hypothesized that the growth controlling transmembrane effect is reversible in most of normal cultured cells and in mature cells having ability of proliferate, e.g. hepatocytes, but that it permanently promotes growth in the embryonic and tumor cells and is lacking in some highly differentiated cell types. This both mechanistic and metabolic transmembrane co-ordinate control allows to rationalize in an uniform model numerous different cell behavior phenomena, in particular surface modulation events, overlapping, contact inhibition of growth and movement, G,, S phase conversion, embryological development, differentiation in mature organisms, and metastasis. Its plausibility and implications are discussed.  相似文献   

15.
The humoral influence of cells of hemopoietic organs of chicken embryos of different terms on the development of the colony and cluster formation of mononuclears of the bone marrow of mice was studied in joint cultivation in two-compartment cylindrical diffuse microchambers. The process of formation of colonies and clusters is inhibited by cells of the yolk sac on the 2nd-4th day of the development, by cells of the liver on the 8th-12th day, of the spleen on the 13th-18th day and of the bone marrow--on the 15th day. The yolk sac cells were found to have most considerable inhibiting influence on proliferation and differentiation of cells on the 2nd day of the development of chicken embryo. The yolk sac cells on the 6th day stimulate the formation of colonies and clusters. The yolk sac, beginning from the 4th day of the development, and the liver release humoral factors promoting the formation of erythroid colonies. The erythroid colonies are formed but when cultivated on the vascular membrane of the chicken embryo; the erythroid colonies are not formed when cultivated in the abdominal cavity of mice. Local erythropoietinoid factors are not synthetized by the spleen and bone marrow cells. A supposition is put forward that a combination of the local inhibiting and erythropoietic effects promotes the erythroid differentiation of cells.  相似文献   

16.
Yolk sac tumors are the most frequent kind of malignant pediatric germ cell tumor and may have a fundamentally different pathogenesis than adult germ cell tumors. Since few cytogenetic studies have been performed so far, in situ hybridization was applied to interphase cell nuclei of seven gonadal yolk sac tumors of childhood in routine paraffin-embedded tissue sections. The panel of chromosome-specific DNA probes was selected on the basis of their relevance in adult germ cell tumors and consisted of five DNA probes specific for the (peri)centromeric regions of chromosomes 1, 8, 12, 17 and/or X and/ or one DNA probe specific for the subtelomeric region of chromosome 1 (p36.3). As in adult germ cell tumors, all pediatric gonadal yolk sac tumors had an increased incidence of numerical chromosome aberrations. All tumors showed an overrepresentation of at least three chromosomes. Gains of chromosome 12, which is highly specific in adult germ cell tumors, were diagnosed in six pediatric gonadal yolk sac tumors. The DNA indices determined in the paraffin-embedded tumor material correlated well with the in situ hybridization findings. A chromosome was either over- or underrepresented, compared with the corresponding DNA indices, in only a few cases. The short arm of chromosome 1 in adult germ cell tumors is often involved in structural aberrations. In pediatric germ cell tumors, the short arm of chromosome 1 is also a nonrandom site of structural aberrations. Moreover, the presence of a deletion at 1p36.3 in four out of five tumors suggests that the loss of gene(s) in this region is an important event in the pathogenesis of gonadal yolk sac tumors of childhood.  相似文献   

17.
 We have studied the embryonic development of the pars intercerebralis/central complex in the brain of the grasshopper using immunocytochemical and histochemical techniques. Expression of the cell-surface antigen lachesin reveals that the neuroblasts of the pars intercerebralis first differentiate from the neuroectoderm at around 26% of embryogenesis. Differentiation of medial and lateral neuroblasts occurs first. By the 28% stage a more or less uniform sheet of 20 neuroblasts has formed. As a result of both cell proliferation and cell translocation, the pars intercerebralis proliferative cluster in each hemisphere expands so that at 30% the most medial neuroblasts lie apposed at the midline. We followed the further development of the pars intercerebralis of each brain hemisphere using bromo-deoxy-uridine incorporation and osmium-ethyl-gallate staining. Within the pars intercerebralis itself, the neuroblasts redistribute into discrete subsets. The neuroblasts of each subset generate clusters of progeny which extend in a stereotypic, subset-specific direction in the brain. We have used this feature to identify one subset of four neuroblasts as being the likely progenitor cells for four clusters of embryonic neurons (W, X, Y, Z) which develop at around 55% of embryogenesis. We show that these progeny project axons via four discrete fascicles (w, x, y, z) into the embryonic central complex. At the single cell level, Golgi impregnation reveals that the axons from these neighbouring cell clusters remain discrete, and those from the same cluster tightly fasciculated, as they project into the central complex, consistent with a modular organization for this brain region. Received: 16 June 1997 / Accepted: 25 June 1997  相似文献   

18.
Experiments were performed to investigate the presence of colony-forming units (CFU) in the mouse embryonic yolk sac during the developmental period in which the yolk sac is the sole hemopoietic organ. Injection of yolk sac cell suspensions from normal embryos into syngeneic, lethally irradiated adult recipients evoked a very low number of spleen colonies. However, prior cultivation of yolk sacs in vitro caused a dramatic increase in the spleen colony-forming capacity--as high as 84-fold--following 48 hours in culture. The yolk sac origin of the spleen colonies was confirmed by: (a) Chromosomal marker analysis; (b) dose-response analysis; (c) demonstrating that the above colonies were not of endogenous origin induced by the mere injection of grafted cells. We conclude that the yolk sac contains many precursors of colony-forming cells which though undetectable by immediate grafting apparently become activated in culture by an as yet unknown induction process.  相似文献   

19.
Little is known about how intercellular communication is regulated in epithelial cell clusters to control delamination and migration. We investigate this problem using Drosophila border cells as a model. We find that just preceding cell cluster delamination, expression of transmembrane immunoglobulin superfamily member, Fasciclin 2, is lost in outer border cells, but not in inner polar cells of the cluster. Loss of Fasciclin 2 expression in outer border cells permits a switch in Fasciclin 2 polarity in the inner polar cells. This polarity switch, which is organized in collaboration with neoplastic tumor suppressors Discs large and Lethal-giant-larvae, directs cluster asymmetry essential for timing delamination from the epithelium. Fas2-mediated communication between polar and border cells maintains localization of Discs large and Lethal-giant-larvae in border cells to inhibit the rate of cluster migration. These findings are the first to show how a switch in cell adhesion molecule polarity regulates asymmetry and delamination of an epithelial cell cluster. The finding that Discs large and Lethal-giant-larvae inhibit the rate of normal cell cluster movement suggests that their loss in metastatic tumors may directly contribute to tumor motility. Furthermore, our results provide novel insight into the intimate link between epithelial polarity and acquisition of motile polarity that has important implications for development of invasive carcinomas.  相似文献   

20.
This paper describes the phenomenon of retraction-induced spreading of embryonic chick heart fibroblasts moving in culture. Measurable criteria of cell spreading (increase in area of the spreading lamella, and total spread area of the cell) are found to change predictably with retraction of a portion of the cell margin. Ruffling activity was found to increase. The leading lamella of a spread fibroblast ordinarily advances slowly, with an average area increase of approximately 21 mu2m/min. A 10- to 30-fold increase in spreading occurs within 8 s after onset of retraction at the trailing edge and then decreases slightly so that by 1 min the increase in spreading is five to tenfold. During this period, there is a linear relationship between area increase at the leading edge and area decrease at the trailing edge. During the next 10--15 min, spreading gradually decreases to normal. Although the relationship between area spreading and area retracting of fibroblasts at different phases of movement is not significantly linear, it is highly correlated (Table II). These results suggest that the rate of fibroblast spreading may be inversely related to the degree of spreading of the cell as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号