首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The initial host response to viral infection occurs after Toll-like receptors (TLRs) on dendritic cells (DC) are stimulated by viral nucleic acids (double-stranded RNA, single-stranded RNA) and alpha interferon (IFN-alpha) and IFN-beta are produced. We hypothesized that pharmacologic induction of innate antiviral responses in the cervicovaginal mucosa by topical application of TLR agonists prior to viral exposure could prevent or blunt vaginal transmission of simian immunodeficiency virus (SIV). To test this hypothesis, we treated rhesus monkeys intravaginally with either the TLR9 agonist, CpG oligodeoxynucleotides (ODN), or the TLR7 agonist, imiquimod. Both immune modifiers rapidly induced IFN-alpha and other antiviral effector molecules in the cervicovaginal mucosa of treated animals. However, both CpG ODN and imiquimod also induced proinflammatory cytokine expression in the cervicovaginal mucosa. In the vaginal mucosa of imiquimod-treated monkeys, we documented a massive mononuclear cell infiltrate consisting of activated CD4(+) T cells, DC, and beta-chemokine-secreting cells. After vaginal SIV inoculation, all TLR agonist-treated animals became infected and had plasma vRNA levels that were higher than those of control monkeys. We conclude that induction of mucosal innate immunity including an IFN-alpha response is not sufficient to prevent sexual transmission of human immunodeficiency virus.  相似文献   

3.
We have previously shown that replication of foot-and-mouth disease virus (FMDV) is highly sensitive to alpha/beta interferon (IFN-alpha/beta). In the present study, we constructed recombinant, replication-defective human adenovirus type 5 vectors containing either porcine IFN-alpha or IFN-beta (Ad5-pIFNalpha or Ad5-pIFNbeta). We demonstrated that cells infected with these viruses express high levels of biologically active IFN. Swine inoculated with 10(9) PFU of a control Ad5 virus lacking the IFN gene and challenged 24 h later with FMDV developed typical signs of foot-and-mouth disease (FMD), including fever, vesicular lesions, and viremia. In contrast, swine inoculated with 10(9) PFU of Ad5-pIFNalpha were completely protected when challenged 24 h later with FMDV. These animals showed no clinical signs of FMD and no viremia and did not develop antibodies against viral nonstructural proteins, suggesting that complete protection from infection was achieved.  相似文献   

4.
5.
6.
Interferon (IFN) is crucial for initiating the innate immune response and for the generation of the adaptive response. IFN, in most species, comprises IFN-alpha (IFN-alpha), IFN-beta (IFN-beta) and IFN-gamma (IFN-gamma). In this study, we compared the capacity of porcine IFN-alpha, -beta and -gamma, or a combination of them, to protect IBRS-2 cells (porcine kidney cells) from infection with pseudorabies virus (PRV). The results demonstrated that porcine IFN-beta (PoIFN-beta) was the most efficient of the three IFNs in conferring resistance PRV infection; 100 U/mL PoIFN-beta inhibited PRV plaque formation 5.3-fold. Compared with PoIFN-beta, porcine IFN-gamma (PoIFN-gamma) was less capable of inhibiting PRV plaque formation (3.3-fold inhibition). Porcine IFN-alpha (PoIFN-alpha) had the least capability of the three PoIFNs, and inhibited PRV plaque formation only 1.26-fold. The inhibitory capacity increased to only 2.3-fold with a treatment of 12,800 U/mL PoIFN-alpha. A combination of PoIFN-gamma and PoIFN-alpha or PoIFN-beta inhibited PRV plaque formation 12.8-fold or 100-fold, respectively. Treatment of IBRS-2 cells with PoIFN-alpha/beta and PoIFN-gamma inhibited PRV replication 29- or 146-fold. Additionally, real-time PCR analyses of the PRV immediate early (IE) gene revealed that IE mRNA expression was profoundly decreased in cells stimulated with PoIFN-alpha/beta and PoIFN-gamma (23.8-133.0-fold) compared with vehicle-treated cells. All the findings indicate that PoIFN-gamma acts synergistically with other PoIFNs (PoIFN-alpha and -beta) to potently inhibit PRV replication in vitro.  相似文献   

7.
Exposure to aldrithiol-2-inactivated human immunodeficiency virus type 1 or gp120, but not gp41, triggered alpha interferon (IFN-alpha), CC chemokine ligand 2 (CCL2), CCL3, and CCL4 production in human plasmacytoid dendritic cells (DCs) but not in myeloid DCs (M-DCs) or monocyte-derived DCs from the same donors. The nonresponsiveness of M-DCs for IFN-alpha/beta production was a general feature specific to these cells, as they also failed to produce it in response to inactivated influenza virus, poly(I-C), lipopolysaccharide, Staphylococcus aureus Cowans I, or CD40L. The different capacities of circulating DC subsets to produce immune mediators in response to most stimuli argue for a different role for these cells in the regulation of innate immunity to pathogens.  相似文献   

8.
Type I interferons (alpha/beta interferons [IFN-α/β]) are the main innate cytokines that are able to induce a cellular antiviral state, thereby limiting viral replication and disease pathology. Plasmacytoid dendritic cells (pDCs) play a crucial role in the control of viral infections, especially in response to viruses that have evolved mechanisms to block the type I IFN signal transduction pathway. Using density gradient separation and cell sorting, we have highly enriched a population of bovine cells capable of producing high levels of biologically active type I IFN. These cells represented less than 0.1% of the total lymphocyte population in blood, pseudoafferent lymph, and lymph nodes. Phenotypic analysis identified these cells as bovine pDCs (CD3(-) CD14(-) CD21(-) CD11c(-) NK(-) TCRδ(-) CD4(+) MHC II(+) CD45RB(+) CD172a(+) CD32(+)). High levels of type I IFN were generated by these cells in vitro in response to Toll-like receptor 9 (TLR-9) agonist CpG and foot-and-mouth disease virus (FMDV) immune complexes. In contrast, immune complexes formed with UV-inactivated FMDV or FMDV empty capsids failed to elicit a type I IFN response. Depletion of CD4 cells in vivo resulted in levels of type I IFN in serum early during FMDV infection that were significantly lower than those for control animals. In conclusion, pDCs interacting with immune-complexed virus are the major source of type I interferon production during acute FMDV infection in cattle.  相似文献   

9.
Expression of alpha interferon (IFN-alpha)-, IFN-beta-, and IFN-alpha/beta-induced genes was monitored during the development of lymphocytic choriomeningitis (LCM) to assess whether a restricted influence of these antiviral cytokines could be found in the central nervous system (CNS). High levels of IFN-alpha (83 +/- 42 U/ml) were present in the blood of LCM virus-infected mice 3 days postinfection, whereas IFN-beta was not detected (< 1.0 U/ml) at any time point. Spleens contained high levels of IFN-alpha and IFN-beta mRNAs at days 1 and 3 postinfection, whereas no IFN-alpha mRNA and only low levels of IFN-beta mRNA were detected in brains. In situ hybridization showed IFN-alpha mRNA-expressing cells in the marginal zones of the spleen and in the subcapsular sinus and outer cortex of cervical lymph nodes. The expression of 2',5'-oligoadenylate synthetase (2',5'-OAS) mRNA followed the expression of IFN-beta mRNA in the brain, whereas 2',5'-OAS mRNA in the periphery was associated with systemic IFN-alpha. The localization of IFN-alpha-expressing cells in the spleen and lymph nodes in proximity to T- and B-cell compartments is consistent with a role for these cytokines in immune regulation. Furthermore, the absence of IFN-alpha and the relatively low level and delayed expression of IFN-beta in the brain suggest that the CNS is an especially vulnerable organ for virus replication. With certain strains of LCM virus, the absence of early antiviral IFN-alpha/beta activity and preferential virus growth in the brain might lead to targeted T-cell inflammation of the CNS, resulting in death of the animal.  相似文献   

10.
Lassa virus (LV) and Mopeia virus (MV) are closely related members of the Arenavirus genus, sharing 75% amino acid sequence identity. However, LV causes hemorrhagic fever in humans and nonhuman primates, whereas MV cannot induce disease. We have previously shown that antigen-presenting cells (APC)-macrophages (MP) and dendritic cells (DC)-sustain high replication rates of LV but are not activated, suggesting that they play a role in the immunosuppression observed in severe cases of Lassa fever. Here, we infected human APC with MV and analyzed the cellular responses induced. MV infection was productive in MP and even more so in DC. Apoptosis was not induced in either cell type. Moreover, unlike DC, MP were early and strongly activated in response to MV, as shown by the increased surface expression of CD86, CD80, CD54, CD40, and HLA-abc and by the production of mRNA encoding alpha interferon (IFN-alpha), IFN-beta, tumor necrosis factor alpha and interleukin-6. In addition, MV-infected MP produced less of the virus than DC, which was related to the fact that these cells secreted IFN-alpha. Thus, the strong activation of MP is probably a major event in the control of MV infection and may be involved in the induction of an adaptive immune response in infected hosts. These results may explain the difference in pathogenicity between LV and MV.  相似文献   

11.
Psoriasis is an inflammatory skin disease, onset and severity of which are controlled by multiple genetic factors; aberrant expression of and responses to several cytokines including IFN-alpha/IFN-beta and IFN-gamma are associated with this "type 1" disease. However, it remains unclear whether genetic regulation influences these cytokine-related abnormalities. Mice deficient for IFN regulatory factor-2 (IRF-2) on the C57BL/6 background (IRF-2(-/-)BN mice) exhibited accelerated IFN-alpha/IFN-beta responses leading to a psoriasis-like skin inflammation. In this study, we found that this skin phenotype disappeared in IRF-2(-/-) mice with the BALB/c or BALB/c x C57BL/6 F(1) backgrounds. Genome-wide scan revealed two major quantitative trait loci controlled the skin disease severity. Interestingly, these loci were different from that for the defect in CD4(+) dendritic cells, another IFN-alpha/IFN-beta-dependent phenotype of the mice. Notably, IFN-gamma expression as well as spontaneous IFN-alpha/IFN-beta responses were up-regulated several fold spontaneously in the skin in IRF-2(-/-)BN mice but not in IRF-2(-/-) mice with "resistant" backgrounds. The absence of such IFN-gamma up-regulation in IRF-2(-/-)BN mice lacking the IFN-alpha/IFN-beta receptor or beta(2)-microglobulin indicated that accelerated IFN-alpha/IFN-beta signals augmented IFN-gamma expression by CD8(+) T cells in the skin. IFN-gamma indeed played pathogenic roles as skin inflammation was delayed and was much more infrequent when IRF-2(-/-)BN mice lacked the IFN-gamma receptor. Our current study thus revealed a novel genetic mechanism that kept the skin immune system under control and prevented skin inflammation through regulating the magnitude of IFN-alpha/IFN-beta responses and downstream IFN-gamma production, independently of CD4(+) dendritic cells.  相似文献   

12.
A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.  相似文献   

13.
ABSTRACT: BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-beta in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-alpha/beta production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-beta and increased the expression of anti-viral genes, including IFN-alpha, IFN-beta, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.  相似文献   

14.
We have previously shown that IFN-beta, a key cytokine associated with the early phase of the innate host defense, can prevent the generation of human Th1 cells. Specifically, we demonstrated that IFN-beta prevents the in vitro monocyte-derived mature dendritic cell (DC)-dependent differentiation of naive Th cells into IFN-gamma-secreting Th cells, as a result of its ability to inhibit DC IL-12 secretion. The goal of the present study was to identify how IFN-beta negatively regulates IL-12 secretion by DC. We report that in our Th cell differentiation model, DC IL-12 secretion is dependent on the CD40L/CD40 accessory pathway, and, utilizing a Th cell-free system, we find that IFN-beta inhibits anti-CD40 mAb-induced DC secretion of the p40 chain of the IL-12 heterodimer. In addition, we show that IFN-beta-mediated inhibition of CD40 signaling does not interfere with all signaling pathways emanating from CD40, since anti-CD40 mAb-induced DC IL-6 secretion is augmented by IFN-beta. Thus, our results demonstrate that signaling from CD40 is differentially regulated by IFN-beta. A second critical element of innate immunity involves the response against components of bacterial membranes such as LPS. DC respond to LPS by secreting IL-6 and IL-12. In contrast to CD40-dependent IL-6 and IL-12 secretion, we find that LPS-induced DC secretion of p40 IL-12 and IL-6 is not affected by IFN-beta. Our findings show that IFN-beta influences the generation of acquired immune responses through its regulation of CD40-dependent DC functions.  相似文献   

15.
Type I IFNs, IFN-alpha and IFN-beta, are early effectors of innate immune responses against microbes that can also regulate subsequent adaptive immunity by promoting antimicrobial Th1-type responses. In contrast, the ability of IFN-beta to inhibit autoimmune Th1 responses is thought to account for some of the beneficial effects of IFN-beta therapy in the treatment of relapsing remitting multiple sclerosis. To understand the basis of the paradoxical effects of IFN-beta on the expression of Th1-type immune responses, we developed an in vitro model of monocyte-derived dendritic cell (DC)-dependent, human naive Th cell differentiation, in which one can observe both positive and negative effects of IFN-beta on the generation of Th1 cells. In this model we found that the timing of IFN-beta exposure determines whether IFN-beta will have a positive or a negative effect on naive Th cell differentiation into Th1 cells. Specifically, the presence of IFN-beta during TNF-alpha-induced DC maturation strongly augments the capacity of DC to promote the generation of IFN-gamma-secreting Th1 cells. In contrast, exposure to IFN-beta during mature DC-mediated primary stimulation of naive Th cells has the opposite effect, in that it inhibits Th1 cell polarization and promotes the generation of an IL-10-secreting T cell subset. Studies with blocking mAbs and recombinant cytokines indicate that the mechanism by which IFN-beta mediates these contrasting effects on Th1 cell generation is at least in part by differentially regulating DC expression of IL-12 family cytokines (IL-12 and/or IL-23, and IL-27) and IL-18.  相似文献   

16.
Despite several decades of investigation, the manner in which foot-and-mouth disease virus (FMDV) interacts with the innate and adaptive immune compartments is not completely understood. The importance of elucidating this relationship is emphasized by the inability of current FMDV vaccines to provide long-term protection and the recent outbreaks of FMDV in formerly disease-free countries. Dendritic cells (DCs) are professional antigen-presenting cells that have evolved to monitor the environment and provide a link between the innate and adaptive immune systems. Comprehending the cross-talk between DC and FMDV will provide valuable information towards understanding the host response to the virus and will aid in the design of effective tools and vaccines to block virus spread.  相似文献   

17.
Sainz B  Halford WP 《Journal of virology》2002,76(22):11541-11550
In vivo evidence suggests that T-cell-derived gamma interferon (IFN-gamma) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-gamma is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-gamma synergizes with the innate IFNs (IFN-alpha and -beta) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-beta or IFN-gamma inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-beta and IFN-gamma inhibits HSV-1 replication by approximately 1,000-fold. Treatment with IFN-beta and IFN-gamma does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-beta and IFN-gamma to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-beta and IFN-gamma inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-beta and IFN-gamma reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by approximately 200-fold. Thus, simultaneous activation of IFN-alpha/beta receptors and IFN-gamma receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-alpha or IFN-beta is produced by most cells as an innate response to virus infection, the results imply that IFN-gamma secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.  相似文献   

18.
Foot-and-mouth disease virus (FMDV) causes an acute vesicular disease of farm animals. The development of successful control strategies is limited by an incomplete understanding of the immune response to FMDV. Dendritic cells (DC) mediate the induction of immunity to pathogens, but their role in FMDV infection of cattle is uncharacterized. Bovine monocyte-derived DC (moDC) were exposed to integrin-binding and cell culture-adapted strains of FMDV in vitro. MoDC were not largely susceptible to infection by integrin-binding FMDV but were susceptible to culture-adapted virus. Binding specific antibodies to integrin-binding FMDV at neutralizing or subneutralizing IgG concentrations significantly enhanced infection via CD32 (FcγR). Monocytes also expressed CD32 but were nonsusceptible to FMDV immune complex (IC) infection, indicating a requirement for additional factors involved in cellular susceptibility. Infection of moDC by the FMDV IC was productive and associated with high levels of cell death. Infected moDC were unable to efficiently stimulate FMDV-specific CD4(+) memory T cells, but exposing moDC to IC containing inactivated FMDV resulted in significantly increased T cell stimulation. Thus, neutralized FMDV concurrently loses its ability to infect susceptible cells while gaining the capacity to infect immune cells. This represents a change in the tropism of FMDV that could occur after the onset of the antibody response. We propose that IC could dynamically influence the anti-FMDV immune response and that this may explain why the early immune response to FMDV has evolved toward T cell independence in vivo. Moreover, we propose that DC targeting could prove useful in the development of effective vaccines against FMDV.  相似文献   

19.
Activation of host innate immune responses was studied in severe acute respiratory syndrome coronavirus (SCV)-infected human A549 lung epithelial cells, macrophages, and dendritic cells (DCs). In all cell types, SCV-specific subgenomic mRNAs were seen, whereas no expression of SCV proteins was found. No induction of cytokine genes (alpha interferon [IFN-alpha], IFN-beta, interleukin-28A/B [IL-28A/B], IL-29, tumor necrosis factor alpha, CCL5, or CXCL10) or IFN-alpha/beta-induced MxA gene was seen in SCV-infected A549 cells, macrophages, or DCs. SCV also failed to induce DC maturation (CD86 expression) or enhance major histocompatibility complex class II expression. Our data strongly suggest that SCV fails to activate host cell cytokine gene expression in human macrophages and DCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号