首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of adriamycin with isolated nuclei converts nuclear DNA to a form which is susceptible to hydrolysis by Neurosporacrassa nuclease an enzyme highly specific for the cleavage of single-stranded DNA. The effect of adriamycin on nuclear DNA incubated in the presence of the nuclease can be determined by measuring the release of acid-soluble nucleotides or by analyzing the DNA after centrifugation in neutral sucrose gradients. Similar changes in chromatin structure are not observed during incubation of nuclei with adriamycin alone. In addition to adriamycin, daunomycin and ethidium bromide are also active in inducing the formation of DNA structures which are susceptible to the Neurosporacrassa nuclease. The results suggest that certain antitumor agents can induce the formation of single-strand regions in nuclear DNA and that these sites probably occur as a result of a DNA strand separating event.  相似文献   

2.
Apoptotic nuclear morphological change without DNA fragmentation.   总被引:8,自引:0,他引:8  
Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by apoptotic stimuli [8] cleave ICAD. CAD, thus released from ICAD, digests chromosomal DNA into nucleosomal units [2] [3]. Here, we examine whether nuclear morphological changes induced by apoptotic stimuli are caused by the degradation of chromosomal DNA. Human T-cell lymphoma Jurkat cells, as well as their transformants expressing caspase-resistant ICAD, were treated with staurosporine. The chromosomal DNA in Jurkat cells underwent fragmentation into nucleosomal units, which was preceded by large-scale chromatin fragmentation (50-200 kb). The chromosomal DNA in cells expressing caspase-resistant ICAD remained intact after treatment with staurosporine but their chromatin condensed as found in parental Jurkat cells. These results indicate that large-scale chromatin fragmentation and nucleosomal DNA fragmentation are caused by an ICAD-inhibitable DNase, most probably CAD, whereas chromatin condensation during apoptosis is controlled, at least in part, independently from the degradation of chromosomal DNA.  相似文献   

3.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:3,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

4.
5.
The binding of cytotoxic T lymphocytes to target cells was studied by ultrastructural and tracer techniques. It was found that binding was achieved through interaction of the microvilli of both cells and that only a relatively small proportion of the cell surface was involved. Short points of contact, averaging 1500 Å in length, were the main form of junction. Periodic substructures were observed in some of the contact points. The transfer of cytoplasmic content from effector to target cell and vice versa was investigated, but no fluorescein or 51Cr-labeled components were transferred during the interaction. Examination of cell organelle localization during the interaction revealed that microfilaments were the only cellular components which localized at the contact area; the well-developed Golgi apparatus of the cytotoxic lymphocytes was randomly distributed.  相似文献   

6.
Stabilization of heterogeneous nuclear RNA by intercalating drugs   总被引:5,自引:0,他引:5  
The effect of the intercalating drugs proflavine, ethidium and daunomycin on the rate of degradation of 14C-labeled heterogeneous nuclear RNA (HnRNA) in KB cells was studied. All three drugs decreased the rate of degradation of 14C-HnRNA to acid soluble products. The most striking effect was produced by proflavine which promptly and completely stabilized 14C-HnRNA against degradation. Ethidium also produced complete stabilization after a delay of 30 to 60 min. Daunomycin decreased the rate of 14C-HnRNA degradation but did not alter the fraction of 14C-HnRNA which was ultimately degraded. The results are consistent with the view that base-paired sequences are present in HnRNA in vivo and play a role in the processing of HnRNA.  相似文献   

7.
Activation of Adriamycin by formaldehyde leads to the formation of drug–DNA adducts in vitro and these adducts stabilise the DNA to such a degree that they function as virtual interstrand cross-links. The formation of these virtual interstrand cross-links by Adriamycin was investigated in MCF-7 cells using a gene-specific interstrand cross-linking assay. Cross-linking was measured in both the nuclear-encoded DHFR gene and in mitochondrial DNA (mtDNA). Cross-link formation increased linearly with Adriamycin concentration following a 4 h exposure to the drug. The rate of formation of Adriamycin cross-links in each of the genomes was similar, reaching maximal levels of 0.55 and 0.4 cross-links/10 kb in the DHFR gene and mtDNA respectively, following exposure to 20 µM Adriamycin for 8 h. The interstrand cross-link was short lived in both DNA compartments, with a half-life of 4.5 and 3.3 h in the DHFR gene and mtDNA respectively. The kinetics of total Adriamycin adduct formation, detected using [14C]Adriamycin, was similar to that of cross-link formation. Maximal adduct levels (30 lesions/10 kb) were observed following incubation at 20 µM drug for 8 h. The formation of such high levels of adducts and cross-links could therefore be expected to contribute to the mechanism of action of Adriamycin.  相似文献   

8.
S B Hall  J A Schellman 《Biopolymers》1982,21(10):2011-2031
The flow linear dichroism of bacteriophage λ and its deletion mutants, λ b2 and λ b221, was determined. The hydrodynamic behavior of the three phages differed slightly, but the magnitude of the dichroism was substantially the same with 〈cos2θμp〉 = 0.364, 0.368, and 0.372, respectively. The dichroism of intercalating dyes combined with bacteriophage was used as a further probe of phage structure. The reduced dichroism from proflavin with T4 showed no change with time during the reaction, but the interpretation of the ligand dichroism is complicated by an alteration of the hydrodynamic behavior of the phage–dye complex relative to the phage alone. Ethidium with λ also produced a stable reduced dichroism, but the signal indicated an average orientation of intercalated dye that is different from the average base orientation. The reduced dichroism of ethidium changes with time as it penetrates λ b2, eventually approaching the dichroism of the nucleotide bases. The implication of these findings on the plausibility of various simple DNA packing models is discussed.  相似文献   

9.
Temperature-gradient gel electrophoresis (TGGE) was used to study DNA-drug interactions. The results indicate that at least two classes of DNA intercalating drugs are distinguishable with respect to temperature increase: reversible and irreversible. The method offers an excellent means of visualizing the melting profile of an individual DNA topoisomer in the presence of DNA binding drugs. Our findings coincide with UV/VIS absorption spectroscopy data.  相似文献   

10.
11.
Unrepaired double-strand breaks in nuclear DNA are not always lethal.   总被引:1,自引:0,他引:1  
  相似文献   

12.
Inhibition of cation-induced DNA condensation by intercalating dyes   总被引:4,自引:0,他引:4  
J Widom  R L Baldwin 《Biopolymers》1983,22(6):1621-1632
Several intercalating dyes are shown to inhibit the cation-induced condensation of λ-DNA when Co3+(NH3)6 is the condensing agent. The dyes that have been studied are ethidium, propidium, proflavin, quinacrine, and actinomycin D. Earlier work has shown that intercalating dyes inhibit ψ-DNA condensation. [Lerman, L. S. (1971) Prog. Mol. Subcell. Biol. 2 , 382–391; Cheng, S. & Mohr, S. C. (1975) Biopolymers 14 , 663–674.] Dye-induced decondensation of intramolecularly condensed DNA has been studied by making use of conditions in which Co3+(NH3)6 produces intramolecular condensation without significant aggregation. Some aggregation is caused, however, during dye-induced decondensation. Dye titration curves of DNA decondensation have been measured by excess light scattering to monitor decondensation and by fluorescence to monitor intercalation. All of the dyes studied act as competing cations in displacing the condensing cation Co3+(NH3)6 from the DNA. Competition occurs both in and below the transition zone for condensation. The effectiveness of a dye as a competing cation increases with its net positive charge. Before decondensation begins, no intercalated dye can be detected, suggesting that intercalation might be incompatible with the proper helix packing needed for cation-induced DNA condensation. To test this last point, methidium–spermine was synthesized: it contains an intercalating methidium head group combined with a polyamine tail. Methidium–spermine is found to cause λ-DNA condensation, but aggregation accompanies condensation, as has been found earlier for spermine and spermidine. Fluorescence and absorption spectra indicate that the methidium group is intercalated when the DNA is condensed, indicating that intercalation need not be incompatible with DNA condensation. The presence of aggregates among the condensed DNA molecules makes this last conclusion tentative.  相似文献   

13.
Efficient nuclear targeting via nonviral delivery of DNA is still an unmet challenge in gene therapy. We have synthesized a novel 9-aminoacridine amino acid monomer that conveniently allows multiple acridines to be incorporated into peptide conjugates. In particular we have prepared bis- and trisacridine conjugates of nuclear localization signal peptide (NLS) ((Acr)2-NLS and (Acr)3-NLS) and studied these as functional transporters for the nuclear delivery of DNA. We show that these conjugates can enhance transfection efficacy as well as nuclear localization of plasmid DNA by more than 50-fold when combined with polyethylenimine at an N:P ratio of 2-3. These conjugates have high reversible affinity for double stranded DNA by intercalation and the technique provides a simple means of associating NLS with DNA of any sequence and at any ratio.  相似文献   

14.
Two distinct mechanisms of action for intercalating agents have been delineated: one leading to the production of frameshift misincorporations and the other leading to the production of single-base substitutions. Addition misincorporations are competitive with respect to DNA template (a measure of classical intercalation) but are not competitive with respect to deoxynucleotide substrates. Single-base substitutions are not competitive with template, polymerase, or deoxynucleotide as tested individually, but are proportional to the absolute drug concentration, indicating a ternary complex involving intercalator, polymerase, and template. Increased frequencies of single-base substitutions have not been considered as a general property of intercalators. Using a mutant phi X174 DNA, we demonstrate that intercalators also induce single-base substitutions with natural DNA templates. Reversion of am3 phi X174 DNA occurs only by single-base substitutions at position 587; this is increased 8-fold when the DNA is copied in vitro in the presence of intercalators.  相似文献   

15.
T Ihara  Y Maruo  S Takenaka    M Takagi 《Nucleic acids research》1996,24(21):4273-4280
Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences.  相似文献   

16.
A modification of the adriamycin quantitative assay for DNA is presented which is sensitive to 1–20 μg DNA. The assay is simple, rapid, and highly reproducible but, contrary to previous claims, not specific for DNA, RNA interferes with the assay while protein does not. The mechanism and sensitivity of the assay is interpreted with reference to published data on adriamycin DNA binding.  相似文献   

17.
Keto C-glycoside-fatty acid conjugates were synthesized from 6-hydroxy 2- and 4-keto unsaturated D-C-glycosides. These compounds were tested for cytotoxic activity against LFCl2A cells (Rat hepatocarcinoma cells). The introduction of a lipid chain to 2-keto C-glycosides induced a drop in the cyctotoxic activity of these compounds. On the other hand 4-keto unsaturated C-glycoside-fatty acid conjugates possessed IC50 values of 0.7–0.001 μM with 21 being the most potent.  相似文献   

18.
The reactions of the hydrated electron (e-aq) and of the hydroxyl radical (OH) with double-stranded DNA in aqueous solution at room temperature have been studied through the use of the intercalating dyes, proflavine and ethidium. These dyes react with e-aq with rate constants of (2.5 +/- 0.2) - 10(10) M-1 - s-1 and (3.0 +/- 0.3) - 10(10) M-1 - s-1, respectively; the rate constant for the reaction of OH with proflavine is (1.0 +/- 0.2) - 10(10) M-1 - s-1. When these molecules are bound within the DNA structure both the yields and the rate constants of reaction with e-aq are reduced in a manner entirely consistent with a simple competition between the DNA bases and restricted dye molecules reacting with a bimolecular rate constant of about 2 - 10(9) M-1 - s-1. No evidence of free electron migration in the DNA was obtained, and an upper limit of five base pairs for the range of such migration was derived. Reactions of the hydroxyl radical with DNA-bound proflavine also lead to a rate constant of about 2 - 10(9) M-1 - s-1. These rate constants are in good agreement with rate predictions (per base unit) for a diffusion-controlled reaction with the DNA structure.  相似文献   

19.
The DNA sequence preferences of the compound meso-tetra-(4-N-methyl(pyridyl) porphyrin and its nickel complex have been investigated by means of footprinting experiments on several DNA fragments, using DNAase I and micrococcal nuclease as footprinting agents. A complex pattern of both AT and GC-protected sites was found. Ligand-induced long-range conformational changes were inferred in several instances to be related to the observed large-scale blockages of enzymatic cutting.  相似文献   

20.
The interaction with DNA of two aromatic nitrogen heterocycles, 1 and 2 , which at pH 6 have two positive charges on their ring systems and two cationic side chains, have been determined. A third similar compound, 3 , with a single side chain and reduced ring charge, was analyzed as a control. Viscometric titrations with sonicated DNA indicated that all three compounds bind to DNA by intercalation. Spectrophotometric binding studies as a function of ionic strength indicated that both 1 and 2 bind to DNA as tetracations at pH 6. These are the first examples of intercalators with two charges directly on the intercalating ring system. Dissociation kinetics experiments as a function of ionic strength confirmed that 1 and 2 bind to DNA as tetracations. Compound 1 has a G · C base-pair binding preference, 2 seems to prefer binding to alternating pyrimidine–purine sequences regardless of the composition, and 3 has no significant binding specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号