首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 strain was overexpressed by using GAL10 promotor in a △gal80 strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to mating factor alpha signal sequence for secretory expression. Use of the △gal80 strain allowed the galactose-free induction of inulinase expression using a glucose-only medium. Shake flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the △gal80 strain improved the expression of inulinase in the recombinant S. cerevisiae in both the aerobic and the anaerobic condition by about 2.9- and 1.7-fold, respectively. 5 L fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at OD600 of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5L scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and the pH was controlled at 5.0. The temperature was maintained at 30degrees C and 37degrees C, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/L, respectively.  相似文献   

3.
Cell wall inulinase (EC 3.2.1.7) was purified from Kluyveromyces marxianus var. marxianus (formerly K. fragilis) and its N-terminal 33-amino acid sequence was established. PCR amplification of cDNA with 2 sets of degenerate primers yielded a genomic probe which was then used to screen a genomic library established in the YEp351 yeast shuttle vector. One of the selected recombinant plasmids allowed an invertase-negative Saccharomyces cerevisiae mutant to grow on inulin. It was shown to contain an inulinase gene (INU 1) encoding a 555-amino acid precursor protein with a typical N-terminal signal peptide. The sequence of inulinase displays a high similarity (67%) to S. cerevisiae invertase, suggesting a common evolutionary origin for yeast beta-fructosidases with different substrate preferences.  相似文献   

4.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

5.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase localized in the cell wall. However, the amount of enzyme invertase present in the culture liquid remained constant throughout the budding cycle. Also, in asynchronous continuous cultures of S. cerevisiae, the production and localization of invertase showed significant fluctuation. The overall invertase production in an asynchronous culture was two to three times higher than in synchronous cultures. This could be due to more-severe invertase-repressive conditions in a synchronous chemostat culture. Both the intracellular glucose-6-phosphate concentration and residual glucose concentration were significantly higher in synchronous chemostat cultures than in asynchronous chemostat cultures. In the asynchronous and synchronous continuous cultures of S. cerevisiae, about 40% of the invertase was released into the culture liquid; it has generally been believed that S. cerevisiae releases only about 5% of its invertase. In contrast to invertase production and localization in the chemostat cultures of S. cerevisiae, no significant changes in inulinase (EC 3.2.1.7) production and localization were observed in chemostat cultures of Kluyveromyces maxianus CBS 6556. In cultures of K. marxianus about 50% of the inulinase was present in the culture liquid.  相似文献   

6.
7.
8.
9.
10.
新疆地区酸马奶中酵母菌的鉴定及其生物多样性分析   总被引:2,自引:0,他引:2  
从新疆少数民族牧民家庭采集的28份传统工艺酿造酸马奶样品中分离出87株酵母菌,并对其进行了生理生化鉴定、分子生物学鉴定和生物多样性分析。生化试验结果表明,新疆地区酸马奶中的酵母菌为Saccharomyces unisporus(占总分离株的48.3%),Kluyveromyces marxianus(27.6%),Pichia membranaefaciens(15.0%)和Saccharomyces cerevisiae(9.2%)。选取其中的6株酵母菌和1株参考菌株,进行大亚基(26S)rDNA D1/D2区域(600bp左右)碱基序列分析,并通过GenBank进行同源序列搜索以确定各菌株的归属,进一步验证生理生化方法的正确性。从得到的结果中可以看出,S.unisporus和K.marxianus为新疆地区酸马奶中的优势菌。  相似文献   

11.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

12.
13.
Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins.  相似文献   

14.
15.
With the recent development of powerful molecular genetic tools, Kluyveromyces lactis has become an excellent alternative yeast model organism for studying the relationships between genetics and physiology. In particular, comparative yeast research has been providing insights into the strikingly different physiological strategies that are reflected by dominance of respiration over fermentation in K. lactis versus Saccharomyces cerevisiae. Other than S. cerevisiae, whose physiology is exceptionally affected by the so-called glucose effect, K. lactis is adapted to aerobiosis and its respiratory system does not underlie glucose repression. As a consequence, K. lactis has been successfully established in biomass-directed industrial applications and large-scale expression of biotechnically relevant gene products. In addition, K. lactis maintains species-specific phenomena such as the "DNA-killer system, " analyses of which are promising to extend our knowledge about microbial competition and the fundamentals of plasmid biology.  相似文献   

16.
17.
18.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

19.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

20.
PCR/RFLP of the NTS2 (IGS2) of rDNA was applied to differentiate two closely related yeast species, Kluyveromyces lactis var. lactis (referred to as K. lactis) and K. marxianus. Using specific primers, the NTS2 region was amplified from DNA of both K. lactis and K. marxianus type and collection strains. AluI restriction of amplified fragments generated patterns characteristic for each species. The NTS2 region from K. lactis var. drosophilarum and related species K. aestuarii, K. africanus, K. dobzhanskii, and K. wickerhamii could also be amplified with the same primers, but AluI patterns generated were clearly different. PCR/RFLP of the NTS2 appears thus to be a convenient method for rapid identification of K. lactis and K. marxianus, frequently found in dairy products. This test was validated therefore on K. lactis and K. marxianus from natural habitats. We showed that all yeast strains collected from whey samples and scoring blue on X-gal glucose plates were either K. lactis or K. marxianus. For application purposes, we propose here an approach for quickly screening for K. lactis/marxianus and Saccharomyces cerevisiae in dairy products using X-gal coloured and lysine growth media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号