首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene(s) encoding the Trypanosoma cruzi shed-acute-phase-antigen (SAPA) has a 5' end encoding a region containing two totally and two partially conserved Ser-X-Asp-X-Gly-X-Thr-Trp motifs which are present in bacterial neuraminidases, and a 3' end encoding tandemly repeated units of 12 amino acids. It is now reported that 54-87% of the total neuraminidase activity present in the parasite could be immunoprecipitated with polyclonal or monoclonal antibodies against the repeated amino acid units of SAPA. These immunoprecipitates also had greater than 80% of the trans-sialidase activity of the parasite. SAPA used sialyllactose, fetuin and 4-methylumbelliferyl-sialic acid as substrate donors. In the presence of a suitable acceptor molecule (lactose) the sialic acid residues were transferred to the disaccharide, whereas in the absence of acceptors the residues were transferred to water. If relatively inefficient acceptors (maltose or cellobiose) were added to the incubation mixtures, the sialic acid units were transferred both to the disaccharides and to water. It is concluded that a major T. cruzi antigen has both the trans-sialidase and the neuraminidase activities of the parasite. Both activities are probably located on the N-terminus of SAPA since antibodies directed against the C-terminus, which contains the repeated amino acid units, do not affect the enzymatic activities.  相似文献   

2.
Trans-sialylation is a unique enzymatic process that is restrictedto some trypanosome species. By expressing developmentally regulatedtrans-sialidases, these protozoan parasites cleave sialic acidsfrom host glycoconjugates and transfer them to acceptors ontheir own cell surfaces. The biological function of this processis not understood, but trans-sialylation is expected to be importantin the invasion of mammalian cells by Trypanosoma cruzi andthe survival of Trypanosoma brucei within its insect vector.Since a conventional gene knockout approach was precluded, wedeveloped a dominant-negative strategy, in which fusion proteinsconsisting of a bacterial sialidase and trypanosome proteinswere expressed in T.brucei and T.cruzi. The strong recombinantsialidase activity shifted the reaction equilibrium from sialicacid transfer to hydrolysis, in this way creating a sialic-acid-negativephenotype. Taking advantage of a recently introduced inducibleexpression system, we were able to control the expression ofsialidase fusion proteins in T.brucez. Reversion of the sialic-acid-negativestate to wild-type sialylation was accomplished by selectiveinhibition of the foreign sialidase, leaving the parasite trans-sialidaseunaffected. Both desialylation and resialylation of trypanosomeswas rapidly achieved. Our results show that neither T.bruceinor T.cruzi require sialic acids for survival in vitro, rulingout the involvement of sialylation in cell surface integrity.The versatile system introduced here will allow a detailed invivo study of the role of trans-sialylation during the trypanosomeinfection cycle. Furthermore, cell-surface sialic acids areimplicated in a multitude of (patho-) biochemical processesin other organisms. The quantitative and qualitative manipulationof cell surface sialic acids, by expressing of counteractingenzymes, constitutes a novel approach with potentially broadapplications in glycobiology. sialidase trans-sialidase sialic acids PARP procyclin dominant-negative phenotype  相似文献   

3.
Trypomastigotes, the blood stage form of the human parasite Trypanosoma cruzi, contain an enzyme on their surface, trans-sialidase, which catalyses the transfer of sialic acid from host glycoconjugates to acceptors on its own cell surface. At least a subset of the sialic acid-bearing acceptor molecules are involved in parasite invasion of host cells, an essential step in the life cycle of the parasite. Another trypomastigote surface enzyme that affects host cell invasion is neuraminidase and recent evidence suggests that both trans-sialidase and neuraminidase activities may be expressed by the same proteins on the parasite surface. We describe here the isolation and expression of several members of a trans-sialidase--neuraminidase gene family from T.cruzi. One of the isolated genes does indeed encode a protein with both trans-sialidase and neuraminidase activities, while other members of the gene family encode closely related proteins that express neither enzymatic activity. Chimeric protein constructs combining different portions of active and inactive genes identified a region of the gene necessary for enzymatic activity. Sequence analysis of this portion of the gene revealed a limited number of amino acid differences between the predicted active and inactive gene products.  相似文献   

4.
Sialidases are hydrolytic enzymes present from virus to highereukaryotes, catalyzing the removal of sialic acid from glycoconjugates.Some protozoa Trypanosomatidae secrete high levels of sialidaseinto the medium. We have now purified the secreted sialidasefrom Trypanosoma rangeli Its N-terminal sequence reveals 100%identity with the corresponding region of the trans-sialidasefrom T.cruzi Trans-sialidase, although homologous to viral andbacterial sialidases, displays a novel sialyltransferase activityand is involved in host cell invasion. Several homologous trans-sialidase-likegenes were cloned from genomic DNA of T.rangeli, and groupedin three subfamilies. Active siali-dase-encoding genes werefound in one of them. The re-combinant sialidase shows similarproperties to those of the native enzyme, including undetectabletrans-sialidase activity. Nevertheless, it has an overall identityof 68.9% with the catalytic domain of T.cruzi trans-sialidase,increasing to 86.7% admitting conservative substitutions. Onlythree other eukaryotic sialidases have been previously cloned,none of them showing significant homology to trans-sialidase.The isolation of a highly similar sialidase is relevant to furtheridentify the molecular determinants allowing trans-sialidaseactivity. As a first approach, chimeric constructs between sialidaseand trans-sialidase were generated, one of them rendering asialidase with three times lower Km than the natural enzyme. eukaryotic sialidase gene family glycosidase parasite sialic acid  相似文献   

5.
Trypanosoma cruzi, the agent of Chagas disease, expresses onits surface a trans-sialidase that catalyzes preferentiallythe transference of -2,3-linked sialic acid to acceptors containingterminal β-galactosyl residues, instead of the typicalhydrolysis reaction, found in most sialidases. The trans-sialidaseis responsible for the acquisition of the host sialic acid bythis protozoan parasite, which does not synthesize sialic acids.Here, we have studied some kinetic properties of a recombinanttrans-sialidase expressed in Escherichia coli We found thatit has sequential-type kinetics for the transferase reaction,as shown for the parasite-derived enzyme. The rates of sialicacid transfer to water (hydrolysis), and to β-galactosylresidues have a unique behavior with respect to the reactiontemperature. While the hydrolysis rate of sialyUactose increasescontinuously up to 35°C, the temperature for the maximalrate of trans-glycosylation depends on the acceptor concentration.At low acceptor concentrations the rate of trans-glycosylationis maximal at 13°C and independent of the amount of sialicacid donors. With increasing acceptor concentrations, maximalrates of trans-glycosylation are shifted to higher temperatures.This finding is explained by an 8-fold increase in the Km forthe acceptor from 13°C to 33°C. Differences in hydrolysisand transfer rates were also obtained by using 4-methyl-umbelliferyl-N-acetyl-neuraminicacid. However, its hydrolysis rate is much higher than the rateof transference to lactose, suggesting that a long-lived enzyme-sialosylintermediate is not formed. In addition, lactose does not increasethe rate of methyl-umbelliferone release at any temperature,indicating that the rate limiting step is the aglycon release.Based on these results we propose that trans-glycosylation inT.cruzi sialidase is favored by the existence of a binding sitefor β-galactosyl residues, which accepts the new glycosidicbond as sialic acid is released from the donor. With increasingtemperature the affinity for the acceptor decreases, resultingin a concomitant increase in the rate of transfer to water,which, in turn, can be suppressed by increasing the acceptorconcentration. Trypanosoma cruzi sialidase kinetics reaction mechanism temperature  相似文献   

6.
A dense glycocalix covers the surface of Trypanosoma cruzi, the agent of Chagas disease. Sialic acid in the surface of the parasite plays an important role in the infectious process, however, T. cruzi is unable to synthesize sialic acid or the usual donor CMP-sialic acid. Instead, T. cruzi expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The mucins are the major glycoproteins in the insect stage epimastigotes and in the infective trypomastigotes. Both, the mucins and the TcTS are anchored to the plasma membrane by a glycosylphosphatidylinositol anchor. Thus, TcTS may be shed into the bloodstream of the mammal host by the action of a parasite phosphatidylinositol-phospholipase C, affecting the immune system. The composition and structure of the sugars in the parasite mucins is characteristic of each differentiation stage, also, interstrain variations were described for epimastigote mucins. This review focus on the characteristics of the interplay between the trans-sialidase and the mucins of T. cruzi and summarizes the known carbohydrate structures of the mucins.  相似文献   

7.
Host/parasite interaction mediated by carbohydrate/lectin recognition results in the attachment to and invasion of host cells and immunoregulation, enabling parasite replication and establishment of infection. Trypanosoma cruzi, the protozoan responsible for Chagas disease, expresses on its surface a family of enzymatically active and inactive trans-sialidases. The parasite uses the active trans-sialidase for glycoprotein sialylation in an unusual trans-glycosylation reaction. Inactive trans-sialidase is a sialic acid-binding lectin that costimulates host T cells through leucosialin (CD43) engagement. The co-mitogenic effect of trans-sialidase can be selectively abrogated by N-acetyllactosamine, suggesting the presence of an additional carbohydrate binding domain for galactosides, in addition to that for sialic acid. Here we investigated the interaction of inactive trans-sialidase in the presence of beta-galactosides. By using NMR spectroscopy, we demonstrate that inactive trans-sialidase has a beta-galactoside recognition site formed following a conformational switch induced by sialoside binding. Thus prior positioning of a sialyl residue is required for the beta-galactoside interaction. When an appropriate sialic acid-containing molecule is available, both sialoside and beta-galactoside are simultaneously accommodated in the inactive trans-sialidase binding pocket. This is the first report of a lectin recognizing two distinct ligands by a sequential ordered mechanism. This uncommon binding behavior may play an important role in several biological aspects of T. cruzi/host cell interaction and could shed more light into the catalytic mechanism of the sialic acid transfer reaction of enzymatically active trans-sialidase.  相似文献   

8.
Chagas' disease, caused by Trypanosoma cruzi, affects about 18 million people in Latin America, and no effective treatment is available to date. To acquire sialic acid from the host glycoconjugates, T. cruzi expresses an unusual surface sialidase with trans-sialidase activity (TcTS) that transfers the sugar to parasite mucins. Surface sialic acid was shown to have relevant functions in protection of the parasite against the lysis by complement and in mammalian host cell invasion. The recently determined 3D structure of TcTS allowed a detailed analysis of its catalytic site and showed the presence of a lactose-binding site where the beta-linked galactose accepting the sialic acid is placed. In this article, the acceptor substrate specificity of lactose derivatives was studied by high pH anion-exchange chromatography with pulse amperometric detection. The lactose open chain derivatives lactitol and lactobionic acid, as well as other derivatives, were found to be good acceptors of sialic acid. Lactitol, which was the best of the ones tested, effectively inhibited the transfer of sialic acid to N-acetyllactosamine. Furthermore, lactitol inhibited parasite mucins re-sialylation when incubated with live trypanosomes and TcTS. Lactitol also diminished the T. cruzi infection in cultured Vero cells by 20-27%. These results indicate that compounds directed to the lactose binding site might be good inhibitors of TcTS.  相似文献   

9.
The trans-sialidase of Trypanosoma cruzi mammalian forms transfers sialic acids from host's cell-surface glycoconjugates to acceptor molecules on parasite cell surface. To investigate the mechanism by which the mammalian stages of Trypanosoma cruzi have acquired their trans-sialidase, we compared the nucleotide and predicted amino acid sequences of trans-sialidase genes expressed in different developmental stages and strains of Trypanosoma cruzi with the sialidase gene of Trypanosoma rangeli and the sialidase genes of the prokaryotic genera Clostridium, Salmonella, and Actinomyces. The trans-sialidase gene products of Trypanosoma cruzi have a significant degree of structural and biochemical similarity to the sialidases found in bacteria and viruses, which would hint that horizontal gene transfer occurred in Trypanosome cruzi trans-sialidase evolutionary history. The comparison of inferred gene trees with species trees suggests that the genes encoding the T. cruzi trans-sialidase of mammalian forms might be derived from genes expressed in the insect forms of the genus Trypanosome. The branching order of trees inferred from T. cruzi trans-sialidase sequences, the sialidase from Trypanosoma rangeli, and bacterial sialidases parallels the expected branching order of the species and suggests that the divergence times of these sequences are remarkably long. Therefore, a vertical inheritance from a hypothetical eukaryotic trans-sialidase gene expressed in insect forms of trypanosomes is more likely to have occurred than the horizontal gene transfer from bacteria, and thus explains the presence of this enzyme in the mammalian infective forms of Trypanosoma cruzi.Correspondence to: M.R.S. Briones  相似文献   

10.
Trypanosomes are unable to synthesize the monosaccharide sialic acid, but some African trypanosomes and the American Trypanosoma cruzi can incorporate sialic acid derived from the host. To do so, T. cruzi expresses a trans-sialidase, an enzyme that catalyzes the transfer of sialic acid from host glycoconjugates to mucin-like molecules located on the parasite surface membrane. The importance of the process is indicated by the fact that T. cruzi has hundreds of genes encoding trans-sialidase, trans-sialidase-like proteins and mucin core proteins. Sequence divergence of members of these families has resulted in some molecules having functions unrelated to the acquisition of sialic acid. In this article, Alberto Frasch reviews the structure and possible function of the proteins making up these families.  相似文献   

11.
S Schenkman  M S Jiang  G W Hart  V Nussenzweig 《Cell》1991,65(7):1117-1125
When trypomastigotes of T. cruzi emerge from cells of the mammalian host, they contain little or no sialic acids on their surfaces. However, rapidly upon entering the circulation, they express a unique cell surface trans-sialidase activity. This enzyme specifically transfers alpha (2-3)-linked sialic acid from extrinsic host-derived macromolecules to parasite surface molecules, leading to the assembly of Ssp-3, a trypomastigote-specific epitope. The T. cruzi trans-sialidase does not utilize cytidine 5' monophospho-N-acetylneuraminic acid as a donor substrate, but readily transfers sialic acid from exogenously supplied alpha (2-3)-sialyllactose. Monoclonal antibodies that recognize sialic acid residues of Ssp-3 inhibit attachment of trypomastigotes to host cells, suggesting that the unusual trans-sialidase provides Ssp-3 with structural features required for target cell recognition.  相似文献   

12.
Trypanosoma cruzi does not synthesize sialic acid but does contain a trans-sialidase, an enzyme capable of transferring sialic acid between host glycoconjugates and the parasite. Sialic acids are negatively charged carbohydrates attached to the terminal non-reducing end of glycoproteins and glycolipids, and their presence can dramatically influence many cell-surface recognition processes. Since sialic acids have been implicated in several ligand-receptor interactions, including the interaction of pathogenic viruses, bacteria and protozoans with their hosts, the expression of trans-sialidase and the acquisition of sialic acid by T. cruzi may be relevant to the interaction of the parasite with the host, and consequently may influence the pathobiology of Chagas disease. In this review, Sergio Schenkman and Daniel Eichinger discuss recent data about the structure and function of T. cruzi trans-sialidase.  相似文献   

13.
Trypanosoma cruzi host cell entry depends on lysosomes for the formation of the parasitophorous vacuole. Lysosome internal surface is covered by two major proteins, highly sialilated, Lysosome Associated Membrane Proteins 1 and 2. T. cruzi, on the other hand, needs to acquire sialic acid from its host cell through the activity of trans-sialidase, an event that contributes to host cell invasion and later for parasite vacuole escape. Using LAMP1/2 knock out cells we were able to show that these two proteins are important for T. cruzi infection of host cells, both in entrance and intracellular development, conceivably by being the major source of sialic acid for T. cruzi.  相似文献   

14.
The procyclic stage of Trypanosoma brucei in the insect vector expresses a surface-bound trans-sialidase (TbTS) that transfers sialic acid from glycoconjugates in the environment to glycosylphosphatidylinositol-anchored proteins on its surface membrane. RNA interference against TbTS abolished trans-sialidase activity in procyclic cells but did not diminish sialidase activity, suggesting the presence of a separate sialidase enzyme for hydrolyzing sialic acid. A search of the T. brucei genome sequence revealed seven other putative genes encoding proteins with varying similarity to TbTS. RNA interference directed against one of these proteins, TbSA C, greatly decreased the sialidase activity but had no effect on trans-sialidase activity. The deduced amino acid sequence of TbSA C shares only 40% identity with TbTS but conserves most of the relevant residues required for catalysis. However, the sialidase has a tryptophan substitution for a tyrosine at position 170 that is crucial in binding the terminal galactose that accepts the transferred sialic acid. When this same tryptophan substitution in the sialidase was placed into the recombinant trans-sialidase, the mutant enzyme lost almost all of its trans-sialidase activity and increased its sialidase activity, further confirming that the gene and protein identified correspond to the parasite sialidase. Thus, in contrast to all other trypanosomes analyzed to date that express either a trans-sialidase or a sialidase but not both, T. brucei expresses these two enzymatic activities in two separate proteins. These results suggest that African trypanosomes could regulate the amount of critical sialic acid residues on their surface by modulating differential expression of each of these enzymes.  相似文献   

15.
Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, expresses on its surface an uncommon membrane-bound sialidase, known as trans-sialidase. trans-Sialidase is the product of a multigene family encoding both active and inactive proteins. We report here that an inactive mutant of trans-sialidase physically interacts with CD4(+) T cells. Using a combination of flow cytometry and immunoprecipitation techniques, we identified the sialomucin CD43 as a counterreceptor for trans-sialidase on CD4(+) T cells. Using biochemical, immunological, and spectroscopic approaches, we demonstrated that the inactive trans-sialidase is a sialic acid-binding protein displaying the same specificity required by active trans-sialidase. Taken together, these results suggest that inactive members of the trans-sialidase family can physically interact with sialic acid-containing molecules on host cells and could play a role in host cell/T. cruzi interaction.  相似文献   

16.
The trans-sialidase from Trypanosoma cruzi (TcTS), the agent of Chagas' disease, is a unique enzyme involved in mammalian host-cell invasion. Since T. cruzi is unable to synthesize sialic acids de novo, TcTS catalyzes the transfer of alpha-(2-->3)-sialyl residues from the glycoconjugates of the host to terminal beta-galactopyranosyl units present on the surface of the parasite. TcTS also plays a key role in the immunomodulation of the infected host. Chronic Chagas' disease patients elicit TcTS-neutralizing antibodies that are able to inhibit the enzyme. N-Glycolylneuraminic acid has been detected in T. cruzi, and the trans-sialidase was pointed out as the enzyme involved in its incorporation from host glycoconjugates. However, N-glycolylneuraminic acid alpha-(2-->3)-linked-containing oligosaccharides have not been analyzed as donors in the T. cruzi trans-sialidase reaction. In this paper we studied the ability of TcTS to transfer N-glycolylneuraminic acid from Neu5Gc(alpha2-->3)Gal(beta1-->4)GlcbetaOCH(2)CH(2)N(3) (1) and Neu5Gc(alpha2-->3)Gal(beta1-->3)GlcNAcbetaOCH(2)CH(2)N(3) (2) to lactitol, N-acetyllactosamine and lactose as acceptor substrates. Transfer from 1 was more efficient (50-65%) than from 2 (20-30%) for the three acceptors. The reactions were inhibited when the enzyme was preincubated with a neutralizing antibody. K(m) values were calculated for 1 and 2 and compared with 3'-sialyllactose using lactitol as acceptor substrate. Analysis was performed by high-performance anion-exchange (HPAEC) chromatography. A competitive transfer reaction of compound 1 in the presence of 3'-sialyllactose and N-acetyllactosamine showed a better transfer of Neu5Gc than of Neu5Ac.  相似文献   

17.
The trans-sialidase from the trypomastigote stage of Trypanosomacruzi was metabolically labeled with [3H]-palmitic acid andpurified by immunoprecipitation with a monodonal antibody. Theaction of PI-PLC on the immunoprecipitate released a lipid thatwas analyzed by TLC. Lyso-1-O-hexadecylglycerol and N-palmitoyl-sphinganinewere obtained in a 1:3 ratio. A comparison with the GPI anchorspresent in the different stages of T.cruzi was made. GPI trans-sialidase Trypanosoma cruzi  相似文献   

18.
The procyclic stage of Trypanosoma brucei is covered by glycosylphosphatidylinositol (GPI)-anchored surface proteins called procyclins. The procyclin GPI anchor contains a side chain of N-acetyllactosamine repeats terminated by sialic acids. Sialic acid modification is mediated by trans-sialidases expressed on the parasite’s cell surface. Previous studies suggested the presence of more than one active trans-sialidases, but only one has so far been reported. Here we cloned and examined enzyme activities of four additional trans-sialidase homologs, and show that one of them, Tb927.8.7350, encodes another active trans-sialidase, designated as TbSA C2. In an in vitro assay, TbSA C2 utilized α2-3 sialyllactose as a donor, and produced an α2-3-sialylated product, suggesting that it is an α2-3 trans-sialidase. We suggest that TbSA C2 plays a role in the sialic acid modification of the trypanosome cell surface.  相似文献   

19.
Trypanosoma cruzi trans-sialidase (TS) is a recently described enzyme which transfers alpha(2-3)-linked sialic acid from host-derived sialylated glycoconjugates to parasite surface molecules [Schenkman et al. (1991) Cell, 65, 1117]. We report here on the ability of TS to transfer sialic acid from donor sialyl-alpha(2-3)lactose to sialidase-treated sheep and human erythrocytes. Up to approximately 50% resialylation of both desialylated red cells could be attained. Resialylation of desialylated sheep erythrocytes restores their resistance to lysis by human complement. This ascribes a possible biological role for T. cruzi TS and demonstrates directly that sialic acid is solely responsible for preventing alternative pathway activation of human complement by sheep erythrocytes.  相似文献   

20.
Molecular dynamics investigations into active site plasticity of Trypanosoma cruzi trans-sialidase, a protein implicated in Chagas disease, suggest that movement of the Trp312 loop plays an important role in the enzyme's sialic acid transfer mechanism. The observed Trp312 flexibility equates to a molecular shovel action, which leads to the expulsion of the donor aglycone leaving group from the catalytic site. These computational simulations provide detailed structural insights into sialyl transfer by the trans-sialidase and may aid the design of inhibitors effective against this neglected tropical disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号