首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A photoreactive derivative of the highly potent gonadotropin releasing hormone (GnRH) agonist, D-Lys6-GnRH(1-9)-ethylamide, was prepared by selective modification of the epsilon-amino group with 2-nitro-4-azidophenyl sulfenyl chloride (2,4-NAPS C1). The modified peptide [D-Lys(NAPS)]6-GnRH-(1-9)-ethylamide was found to be a full agonist of LH release from rat pituitary cells with a relative potency 23 compared to GnRH. Covalent attachment of the photoreactive analog to rat pituitary cells resulted in prolonged activation of LH secretion which could not be inhibited by a potent GnRH antagonist. Persistent stimulation of pituitary gonadotrophs caused by covalently bound hormone led to desensitization of the LH releasing mechanism.  相似文献   

2.
A fluorescent derivative of the gonadotropin-releasing hormone (GnRH) agonist analog, [D-Lys6]GnRH, was synthesized for receptor studies and shown to be biologically active. The rhodamine-derivatized peptide (Rh-GnRH) retained 40% of the receptor binding activity of [D-Lys6]GnRH, and 50% of the luteinizing hormone-releasing activity assayed in cultured pituitary cells. The fluorescent analog was employed to visualize the distribution of GnRH receptors in cultured pituitary cells, using the technique of video-intensified fluorescence microscopy. The binding of Rh-GnRH was confined to the large gonadotrophs which comprised 15% of the cell population. The specificity of the binding was shown by the absence of significant fluorescence in the presence of a 100-fold excess of [D-Lys6]GnRH, or when Rh-GnRH was incubated with choriocarcinoma, neuroblastoma, or 3T3 cell lines devoid of GnRH receptors. The interaction of Rh-GnRH with living pituitary cells was characterized by an initial diffuse distribution, followed by the formation of polar aggregates that later appeared to be internalized. These observations emphasize the value of fluorescent derivatives of GnRH for elucidating the course of the interaction with specific receptors on pituitary gonadotrophs. The initial results indicate that GnRH-receptor complexes undergo aggregation during stimulation of luteinizing hormone release, and are later internalized for subsequent degradation and/ or intracellular actions.  相似文献   

3.
The hypothalamic decapeptide, GnRH, stimulates LH and FSH release from pituitary gonadotrophs. Many synthetic peptide analogs, both agonist (GnRH-A) and antagonist (GnRH-AT), have been developed which bind specifically to the GnRH receptor. We have utilized highly potent GnRH-A and GnRH-AT analogs labeled with 18 nm colloidal gold to analyze ultrastructurally the events of binding and interiorization of these specific ligands by gonadotrophs in vitro. To examine internalization of GnRH-A-gold, gonadotrophs were cooled to 4 degrees C and equilibrated with the ligand for 1 h. Next, the cells were either fixed immediately or warmed to 37 degrees C for various times (5, 15 and 30 min) and prepared for electron microscopy. For GnRH-AT-gold, which binds slowly at 4 degrees C, the ligand was incubated with gonadotrophs at 37 degrees C for 15, 30 and 60 min, and the cells were processed for electron microscopy at each time point. In both cases, control gonadotrophs were also incubated in an excess of GnRH-A and GnRH-AT, respectively, in the presence of the gold-conjugated ligands. The results indicated that GnRH-A-gold was bound and rapidly internalized via a receptor-mediated endocytic pathway. GnRH-AT-gold was also bound but showed only limited entry into gonadotrophs; the percentage of intracellular GnRH-AT-gold in gonadotrophs was the same as in other pituitary cells contaminating the gonadotroph fraction and did not increase with time. In the gonadotroph, binding of the specific antagonist ligand to GnRH receptors does not stimulate its interiorization, in contrast to the rapid endocytosis and processing of the agonist ligand. These data suggest that specific ligand internalization requires prior receptor activation, and that GnRH-AT which does not activate the receptor remains bound at the cell surface for a prolonged period.  相似文献   

4.
Photoreactive derivatives of GnRH and its analogues were prepared by incorporation of the 2-nitro-4(5)-azidophenylsulfenyl [2,4(5)-NAPS] group into amino acid residues at positions 1, 3, 6, or 8 of the decapeptide sequence. The modification of Trp3 by the 2,4-NAPS group led to a complete loss of the luteinizing hormone (LH) releasing as well as LH-release-inhibiting activity of the peptide. The [D-Lys(2,4-NAPS)]6 analogue was a very potent agonist that, after covalent attachment by photoaffinity labeling, caused prolonged LH secretion at a submaximal rate. [Orn(2,4-NAPS)]8-GnRH, a full agonist with a relative potency of 7% of GnRH, after photoaffinity labeling caused prolonged maximal LH release from cultured pituitary cells. In contrast, [Orn(2,5-NAPS)]8-GnRH, although being equipotent with the 2,4-NAPS isomer in terms of LH releasing ability, was unable to cause prolonged LH release after photoaffinity labeling. Thus, [Orn(2,4-NAPS)]8-GnRH is a very effective photolabeling ligand of the functionally significant pituitary GnRH receptor. Based on this compound, a pituitary peptidase resistant derivative, D-Phe6,[Orn(2,4-NAPS)]8-GnRH-(1-9)-ethylamide, was synthesized. This derivative showed high-affinity binding to pituitary membranes with a Kd comparable to those of other GnRH analogues. A radioiodinated form of this peptide was used for pituitary GnRH-receptor labeling. This derivative labeled 59- and 57-kDa proteins in rat and 58- and 56-kDa proteins in bovine pituitary membrane preparations, respectively. This peptide also labeled pituitary GnRH receptors in the solubilized state and therefore appears to be a suitable ligand for the isolation and further characterization of the receptor.  相似文献   

5.
A dinitrophenyl (DNP)-derivative of a gonadotropin releasing hormone (GnRH) antagonist was prepared by chemical modification of the epsilon amino group in position 6 of [D-pGlu1,D-Phe2,D-Trp3,D-Lys6]GnRH with 1-fluoro-2, 4-dinitrobenzene. The DNP-antagonist D-pGlu-D-Phe-D-Trp-Ser-Tyr-D-Lys(N epsilon-DNP)-Leu-Arg-Pro-Gly-NH2, retained high affinity binding to the GnRH receptor of pituitary membrane preparations and exhibited antagonistic activity when assayed in cultured pituitary cells. Both antibodies against DNP and their Fab fragments were able to bind the DNP-antagonist. However, only the addition of bivalent antibodies (and not the Fab fragments) converted the DNP-antagonist to an agonist. These results suggest that divalency is a critical factor in GnRH action.  相似文献   

6.
Summary Localization of GnRH receptors in rat pituitary gonadotropes was studied by use of 125I-[azidobenzoyl-D-Lys6]GnRH which, upon photolysis, is covalently bound to the receptor molecule. Using high resolution autoradiography, it was found that, after a 90-min incubation of the analog with pituitary cells at 4° C, 93% of the silver grains were associated with the plasma membrane of the gonadotropes. After 45-min incubation of the cells at 37° C, clustering and internalization of the receptor-bound GnRH analog were evident. Silver grains were associated with coated pits, intracellular vesicles, Golgi complexes, lysosome-like structures and secretory granules. The data indicate that receptor-bound GnRH agonist is internalized, at least in part, via coated pits and is subsequently routed to lysosomes where degradation of the hormone-receptor complex may occur. The presence of a considerable amount of silver grains associated with secretory granules may suggest that some of the internalized receptor molecules can escape degradation and be recycled to the cell membrane.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH) stimulates release of pituitary gonadotropins by activating specific plasma membrane receptors. In the present studies, we have used activators of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) to probe the binding characteristics of agonist- or antagonist-occupied GnRH receptors in intact cell cultures, using a radioligand receptor assay. Specific binding of [125I-Tyr5,D-Ser(tBu)6,Pro9,NHEt]GnRH (Buserelin), a high-affinity GnRH agonist, was increased to 180% of control in the presence of 150 nM phorbol 12-myristate 13-acetate (PMA) or 100 nM phorbol 12,13-dibutyrate (PDB), and to 125% of control in the presence of 200 microM 1,2-dioctanoylglycerol, after 20 min at 23 degrees C. The PMA effects were associated with apparent increases in both binding affinity and number of binding sites. The effects of protein kinase C activators on Buserelin binding were concentration- and time-dependent and were not seen with 4 alpha-PMA or 1,2-dioctanoyl-3-Cl-glycerol, neither of which activate protein kinase C. In contrast, PMA had no measurable effects on specific binding of a GnRH receptor antagonist, Ac[D-pCl-Phe1,2,D-Trp3,125I-Tyr5,D-Lys6,D-Ala10]GnRH. When cell cultures were pretreated with 100 nM PDB in the absence of GnRH and then washed to remove the phorbol ester, no effects of prior protein kinase C activation were detected upon subsequent addition of Buserelin. However, when PDB pretreatment was carried out in the presence of 0.3 microM GnRH, residual enhancement of Buserelin binding, but not antagonist binding, was observed at either 23 or 4 degrees C. The radiolabeled agonist activated, and the antagonist blocked, GnRH receptor-mediated luteinizing hormone release and [3H]inositol phosphate production in cells preloaded with [3H]inositol. These findings suggest that the action of protein kinase C on the GnRH receptor, either direct or indirect, requires the receptor to be in an activated (agonist-occupied) state but does not require receptor internalization. The mechanism of these effects on GnRH agonist binding is not known but may involve sequestration of surface receptors, expression of new receptors, and/or modulation of GnRH receptor affinity.  相似文献   

8.
A photoaffinity antagonist of gonadotropin releasing hormone (GnRH), D pGlu-D-Phe-D-Trp-Ser-D-Lys6(N epsilon-azidobenzoyl)-Leu-Arg-Pro-Gly-NH2 (photoaffinity antagonist) was prepared by reacting [D-pGlu1, D-Phe2, D-Trp3, D-Lys6]GnRH with the N-hydroxysuccinimide ester of 4-azidobenzoic acid. The analog appeared homogeneous when analyzed by thin-layer chromatography and its photoreactivity was demonstrated by spectral changes when exposed to light. The photoaffinity antagonist retained high affinity binding to the GnRH receptor of pituitary membrane preparations and exhibited antagonistic activity when assayed in vitro in whole pituitaries. Pituitary membrane preparations were incubated with the radioactive photoaffinity GnRH antagonist and irradiated with light. Sodium dodecyl sulfate gel electrophoresis after solubilization and reduction showed the specific labeling of a single specific protein with an apparent molecular weight of 60,000 daltons. These results indicate that GnRH agonists and antagonists bind to the same receptor.  相似文献   

9.
These studies describe the application of new cytochemical stains that co-localize a biotin-labeled gonadotropin releasing hormone (GnRH) analog and FSH or LH in the same field or cell. Pituitary monolayer cells were stimulated with the [D-Lys6] GnRH analog or the same analog labeled with biotin. Biotinylated [D-Lys6] GnRH exhibited a higher affinity and was 7-10 X more potent than unlabeled [D-Lys6] GnRH. The avidin-biotin peroxidase complex technique (ABC) was applied to localize the biotinylated GnRH on the cells with the use of a dense black peroxidase substrate. Specificity tests showed that the stain could be eliminated by competition with unlabeled [D-Lys6] GnRH. The GnRH stain was followed by immunocytochemical stains for LH beta, FSH beta or 25-39ACTH with a different peroxidase substrate (amber or orange-red). Stain for GnRH was found on the surfaces of 16% of the cells and 60-90% of the GnRH stained cells also stained for one of the gonadotropins. Most (90-100%) of the gonadotropes showed stain for GnRH. Our studies demonstrate that a potent biotinylated GnRH analog binds cells that can be identified specifically as gonadotropes.  相似文献   

10.
Receptors for GnRH were labeled by use of an iodinated (125I) photoreactive GnRH derivative [D-Lys6-azidobenzoyl]-GnRH. This derivative was found to bind to two classes of GnRH binding sites: high-affinity/low-capacity sites and low-affinity/high-capacity sites. The binding affinity of [D-Lys6-azidobenzoyl]-GnRH was found to be greater than that of D-Lys6-GnRH, but lower than a superactive fish GnRH agonist [D-Arg6, Trp7, Leu8, Pro9-NEt]-GnRH (sGnRH-A). Analysis of the photoaffinity-labeled goldfish pituitary GnRH receptors by SDS-PAGE and autoradiography indicated the presence of three labeled proteins displaceable by unlabeled sGnRH-A. The first and the most prominently labeled band was a 71,000-Mr protein, the second a 51,000-Mr protein, and the third a minor band of 130,000 Mr. Displacement characteristics of the 71,000- and 130,000-Mr bands were consistent with those of the low-affinity binding sites; displacement of the iodinated ligand from these proteins was achieved only in the presence of 10(-6) M sGnRH-A. The 51,000-Mr band had characteristics similar to those of the high-affinity site; displacement of the labeled ligand was achieved in the presence of 10(-9) M sGnRH-A. These findings provide for the first time some biochemical characterizations of pituitary GnRH receptors in a nonmammalian vertebrate.  相似文献   

11.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of Ca(2+)- and phospholipid-dependent protein kinase (C kinase), stimulates luteinizing hormone (LH) release from rat pituitary cells. The actions of TPA upon LH release were compared with those of the GnRH superagonist [D-Ala6] des-Gly10-GnRH N-ethylamide (GnRHa) in cultured pituitary cells. LH release was stimulated by 0.1 nM TPA and the maximum response at 10 nM TPA was 50% of the LH response to GnRHa. The ED50 values for TPA and GnRHa were 1.2 and 0.037 nM, respectively, and the maximum stimulatory effects of TPA and GnRHa on LH release were not additive. GnRHa-stimulated LH release was decreased by calmodulin (CaM) antagonists including pimozide, trifluoperazine, W5 and W7, being most effectively reduced (by 70%) by 10 microM pimozide. In contrast to their inhibition of GnRH action, these antagonists enhanced TPA-stimulated LH release, so that 10 microM pimozide and W7 doubled the maximum LH response. The potent GnRH antagonist [Ac-D-p-Cl-Phe1.2, D-Trp3, D-Lys6, D-Ala10]GnRH, which completely inhibited GnRHa-stimulated LH release with ID50 of 6.8 nM, also reduced maximum TPA-stimulated LH release by about 50%. These results suggest that both Ca2+/CaM and C kinase pathways are involved in the LH release mechanism, and indicate that C kinase plays a major role in the action of GnRH upon gonadotropin secretion. The synergism between CaM antagonists and TPA suggests that blockade of CaM-mediated processes leads to enhanced activation of the C kinase pathway, possibly by removal of an inhibitory influence. Furthermore, the partial inhibition of TPA-stimulated LH release by a GnRH antagonist suggests that the pathway(s), specifically connected with LH release in the diverse effects of C kinase, might be locked by the continuous receptor inactivation by antagonist and indicates the complicated pathways which diverge from the receptor and converge into specific cellular response.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) regulates pituitary gonadotropin release by a Ca2+-dependent mechanism involving receptor-mediated phosphoinositide hydrolysis. Previous studies indicate that activation of pituitary protein kinase C (PKC), while not required for acute gonadotropin release in response to GnRH, is likely involved in the chronic regulation of gonadotrope responsiveness. Studies from our laboratory have shown that activation of PKC by phorbol esters produces both the uncoupling of GnRH-stimulated phosphoinositide hydrolysis and the selective enhancement of GnRH agonist binding in pituitary cell cultures. In the present work, we have examined the possibility that these processes are related in mechanism. Dissociation of bound agonist radioligand at 23 degrees C was found to be reduced in the presence of phorbol esters, and ligand bound in the presence of phorbol ester was resistant to displacement by competing ligands at 4 degrees C. However, agonist bound in the presence of phorbol ester was dissociable by subsequently washing cells at pH 3. Receptor photoaffinity labeling studies confirmed that agonist association with membrane component(s) identified as the GnRH receptor was increased in the presence of phorbol ester. These results suggest that, in the presence of a phorbol ester PKC activator, agonist-occupied GnRH receptors remain at the cell surface, but are sequestered in some manner. In other experiments, cell preloaded with [3H]inositol were treated with GnRH agonist ligand and phorbol ester at 4 degrees C to form a pool of sequestered, agonist-occupied receptors, and then displaceable (nonsequestered) agonist was removed by incubation with antagonist ligand. After addition of LiCl and warming to 37 degrees C, [3H]inositol phosphate production (an index of phosphoinositide hydrolysis) in phorbol ester-treated cells was reduced to 67% of vehicle control, although residual specific agonist binding had been increased to greater than 300% of control. The appearance of sequestered receptors and inhibition of [3H]inositol phosphate production had similar phorbol ester concentration dependencies. These results suggest that the same agonist-occupied GnRH receptors sequestered as a result of PKC activation also are preferentially uncoupled from phosphoinositide hydrolysis.  相似文献   

13.
A powerful GnRH antagonist: [Ac-D-Trp1,3,D-Cpa2,D-Lys6,D-Ala10]-GnRH (MI-1544) and a superactive GnRH agonist: [D-Phe6,desGly10]-GnRH(1-9)EA (OVURELIN) were used in long-term administration to compare their effects on the inhibition of ovulation, LH and progesterone (P) release, LH content of pituitaries as well as on the recovery period. Both analogs showed 100% inhibitory effects on ovulation in very low doses during the daily treatment for 21 days. The antagonist prevented LH release already after the first injection, decreased the serum P level to 40%, and increased the LH content of the pituitary up to 180%, inhibiting only the release but not the synthesis of LH. The agonist showed marked LH-releasing effects on the first day of the treatment, which were reduced to 12% on the 7th day. Serum P concentration was dropped to 68% by the end of the treatment. No change was found in the LH content of pituitaries in the group treated with the agonist. Ovaries showed polifollicular pictures in the antagonist-treated group, and persistent corpora lutea were seen in the ovaries from the agonist-treated group. Regular estrous cycles returned 13-15 days after ceasing the treatment with the antagonist and 3-5 days after ceasing the treatment with the agonist. No edema-inducing effect was observed after the injections of the antagonist in doses of 100 times higher than the single antiovulatory dose.  相似文献   

14.
Binding of gonadotropin-releasing hormone (GnRH, pyro-Glu1-His2-Trp3-Ser4-Tyr5-Gly6-Leu7-Arg8-Pro9-Gly-NH210) to its plasma membrane receptor is the first step leading to the release of pituitary luteinizing hormone. As in the case of other plasma membrane receptors, patching, capping, and internalization of this hormone-receptor complex occurs rapidly following exposure of cultured pituitary cells to physiological levels of releasing hormone. In the present study we sought to determine whether gonadotropin release could occur under conditions which rigorously excluded internalization. A GnRH analog, D-Lys6-GnRH (to which a small quantity of [125I]iodoTyr5-D-Lys6-GnRH was added), was coupled by its epsilon-amino group with an N-hydroxysuccinimide ester then, through a 10-A spacer arm, to a cross-linked agarose matrix. Exposure of the product to proteases, soaps, detergents, solvents, chaotropic agents, or cell cultures resulted in dissociation of < 0.28% of biologically active releasing hormone. The apparent potency of the immobilized analog was one-fourth that of the free form and it was still capable of evoking a full luteinizing hormone secretory response. It can, therefore, be concluded that internalization of GnRH is not required for gonadotropin release.  相似文献   

15.
Rates of internalization of the murine GnRH receptor fused via its C-terminus to green fluorescent protein (GnRH-R-GFP) were examined in Chinese hamster ovary cells (CHO cells) and compared to those of native murine GnRH-R in a clonal murine gonadotroph cell line (LbetaT2 cells). The resulting rates of internalization of murine receptors were then compared with those of sheep GnRH-R in ovine gonadotrophs. Cells were incubated with radioiodinated [D-Ala6]GnRH on ice for 4 h to allow binding of the ligand to GnRH-R, then cells were warmed to 37 degrees C to permit internalization. Surface-bound radioligand began to decrease as soon as the cells were warmed and had decreased significantly within 20 min. A steady-state level of surface-bound radioligand was achieved after 60 min in both CHO cells and LbetaT2 cells (38% and 41%, respectively, of initial value; P < 0.05). Internalization of radioligand began immediately after warming the cells to 37 degrees C, and a significant proportion of surface ligand had been internalized by 20 min. A steady-state maximum of internalization was reached after 60 min in both CHO cells and LbetaT2 cells (29% and 28%, respectively, of total cell-associated ligand; P < 0.05). Changes in surface-bound radioligand and internalized radioligand in sheep pituitary cells were similar to those in CHO cells and LbetaT2 cells, but the amount of radioligand internalized after 60 min (40% of total cell-associated ligand) was 1.4 times higher than in CHO cells and LbetaT2 cells (P < 0.05). In a separate experiment, the effect of estradiol on the rate of internalization of GnRH-R in ovine pituitary cells was examined. Although treatment of ovine pituitary cells with estradiol approximately doubled the number of GnRH receptors, it did not alter either the rate or extent of receptor internalization. These results show that rates of internalization of recombinant murine GnRH-R-GFP in CHO cells and native murine and ovine GnRH-R in LbetaT2 cells and in sheep pituitary cells, respectively, are similar, but amounts of ovine GnRH-R internalized are greater than those for murine GnRH-R. Further, the rate of internalization of occupied receptor is similar in gonadotroph and nongonadotroph cells, and the addition of GFP to the C-terminus of the murine GnRH-R does not alter the rate of internalization.  相似文献   

16.
The relationship between number of receptors for gonadotropin-releasing hormone (GnRH) and the ability of the anterior pituitary gland to release luteinizing hormone (LH) was examined in ovariectomized ewes. A GnRH antagonist was used to regulate the number of available receptors. The dose of GnRH antagonist required to saturate approximately 50 and 90% of GnRH receptors in ovariectomized ewes was determined. Thirty min after intracarotid infusion of GnRH antagonist, ewes were killed and the number of unsaturated (i.e., those available for binding) pituitary GnRH receptors was quantified. Infusion of 10 and 150 micrograms GnRH antagonist over a 5-min period reduced binding of the labeled ligand to approximately 50 and 12% of controls, respectively. The effect of reducing the number of GnRH receptors on release of LH after varying doses of the GnRH agonist, D-Ala6-GnRH-Pro9-ethylamide (D-Ala6-GnRH) was then evaluated. One of four doses of D-Ala6-GnRH (0.125, 2.5, 50 and 400 micrograms) was given i.v. to 48 ovariectomized ewes whose GnRH receptors had not been changed or were reduced to approximately 50 or 12% of control ewes. In ewes with a 50% reduction in GnRH receptors, total release of LH (area under response curve) was lower than that obtained for controls (P less than 0.01) at the 0.125-micrograms dose of D-Ala (6.1 +/- 0.7 cm2 vs. 13.5 +/- 0.7 cm2) but was not different at the 2.5-, 50- or 400-micrograms doses of D-Ala6-GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
GnRH regulates the reproductive system through cognate G protein-coupled receptors in vertebrates. Certain GnRH analogs that are antagonists at mammalian receptors behave as agonists at Xenopus laevis and chicken receptors. This phenomenon provides the opportunity to elucidate interactions and the mechanism underlying receptor activation. A D-Lys(iPr) in position 6 of the mammalian GnRH receptor antagonist is required for this agonist activity (inositol phosphate production) in the chicken and X. laevis GnRH receptors. Chimeric receptors, in which extracellular loop domains of the human GnRH receptor were substituted with the equivalent domains of the X. laevis GnRH receptor, identified extracellular loop 2 as the determinant for agonist activity of one of the mammalian antagonists: antagonist 135-18. Site-directed mutagenesis of nine nonconserved residues in the C-terminal domain of extracellular loop 2 of the human GnRH receptor showed that a minimum of two mutations (Val(5.24(197))Ala and Trp(5.32(205))His) is needed in this region for agonist activity of antagonist 135-18. Agonist activity of antagonist 135-18 was markedly decreased by low pH (<7.0) compared with GnRH agonists. These findings indicate that D-Lys(iPr)(6) forms a charge-supported hydrogen bond with His(5.32(205)) to stabilize the receptor in the active conformation. This discovery highlights the importance of EL-2 in ligand binding and receptor activation in G protein-coupled receptors.  相似文献   

18.
GnRH and its receptor are expressed in human reproductive tract cancers, and direct antiproliferative effects of GnRH analogs have been demonstrated in cancer cell lines. The intracellular signaling responsible for this effect differs from that mediating pituitary gonadotropin secretion. The GnRH structure-activity relationship is different for the two effects. Here we report a structure-activity relationship study of GnRH agonist antiproliferative action in model cell systems of rat and human GnRH receptors stably expressed in HEK293 cells. GnRH II was more potent than GnRH I in inhibiting cell growth in the cell lines. In contrast, GnRH I was more potent than GnRH II in stimulating inositol phosphate production, the signaling pathway in gonadotropes. The different residues in GnRH II (His(5), Trp(7), Tyr(8)) were introduced singly or in pairs into GnRH I. Tyr(5) replacement by His(5) produced the highest increase in the antiproliferative potency of GnRH I. Tyr(8) substitution of Arg(8) produced the most selective analog, with very poor inositol phosphate generation but high antiproliferative potency. In nude mice bearing tumors of the HEK293 cell line, GnRH II and an antagonist administration was ineffective in inhibiting tumor growth, but D-amino acid stabilized analogs (D-Lys(6) and D-Arg(6)) ablated tumor growth. Docking of GnRH I and GnRH II to the human GnRH receptor molecular model revealed that Arg(8) of GnRH I makes contact with Asp(302), whereas Tyr(8) of GnRH II appears to make different contacts, suggesting these residues stabilize different receptor conformations mediating differential intracellular signaling and effects on gonadotropin and cell growth. These findings provide the basis for the development of selective GnRH analog cancer therapeutics that directly target tumor cells or inhibit pituitary gonadotropins or do both.  相似文献   

19.
E Netiv  M Liscovitch  Z Naor 《FEBS letters》1991,295(1-3):107-109
Stimulation of cultured pituitary cells from a gonadotrope lineage (alpha T3-1) by the gonadotropin-releasing hormone agonist analog [D-Trp6]GnRH (GnRH-A) resulted in a manifold increase in accumulation of phosphatidylethanol, a specific product of phospholipase D phosphatidyl transferase activity when ethanol is the phosphatidyl group acceptor. Levels of the natural lipid product of phospholipase D, phosphatidic acid, were increased 2-3-fold. Activation of phospholipase D by GnRH-A was dose- and time-dependent and was blocked by a GnRH receptor antagonist [D-pClPhe2,D-Trp3.6]GnRH. GnRH-A stimulated phospholipase D activity after a lag of 1-2 min. We conclude that in alpha T3-1 gonadotropes GnRH receptor occupancy results in delayed activation of phospholipase D which could participate in late phases of gonadotrope regulation by the neurohormone.  相似文献   

20.
Stimulation of enriched pituitary gonadotrophs by gonadotropin-releasing hormone (GnRH) elicits dose-dependent biphasic elevations of cytosolic calcium ([Ca2+]i) and luteinizing hormone (LH) release, with rapid initial peaks followed by sustained plateaus during continued exposure to the agonist. A potent GnRH-antagonist, [N-acetyl-D-p-Cl-Phe1,2,D-Trp3,D-Lys6,D-Ala10]GnRH, prevented the biphasic [Ca2+]i and LH responses when added before GnRH, and rapidly abolished both responses to GnRH when added during the plateau phase. In low Ca2+ medium the LH peak responses to GnRH were reduced and the subsequent sustained responses were almost completely abolished; reduction of extracellular Ca2+ during exposure to GnRH caused a prompt decline of LH release. The initial [Ca2+]i peak is derived largely from intracellular calcium mobilization with a partial contribution from calcium influx, while the sustained phase is dependent on the entry of extracellular Ca2+ through both L-type and dihydropyridine-insensitive channels. The presence of L-type voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs was indicated by the ability of elevated extracellular [K+] to stimulate calcium influx and LH release, and the sensitivity of these responses to dihydropyridine agonist and antagonist analogs. In cells pretreated with high [K+], the peak [Ca2+]i response to GnRH was enhanced but the subsequent plateau phase was markedly attenuated. This divergent effect of sustained membrane depolarization on the biphasic [Ca2+]i response suggests that calcium entry through VSCC initially potentiates agonist-induced mobilization of Ca2+ from intracellular storage sites. However, established Ca2+ entry through depolarization-activated VSCC cannot be further increased by agonist stimulation because both processes operate through the same channels, probably by changes in their activation-inactivation kinetics. Finally, the reciprocal potentiation by the dihydropyridine agonist, BK 8644, and GnRH of [Ca2+]i and LH responses confirms that both compounds act on the same type of channels, i.e., L-type VSCC, that participate in agonist-mediated calcium influx and gonadotropin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号