首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Photosystem II (PSII) activity was examsined in leaves of chilling-sensitive cucumber ( Cucumis sativus L.), tomato ( Lycopersicum esculentum L.), and maize ( Zea mays L.), and in chilling-tolerant barley ( Hordeum vulgare L.) illuminated with moderate white light (300 µmol m−2 s−1) at 4°C using chlorophyll a fluorescence measurements. PSII activity was inhibited in leaves of all the four plants as suggested by the decline in F v/ F m, 1/ F o − 1/ F m, and F v/ F o values. The changes in initial fluorescence level ( F o), F v/ F m, 1/ F o − /1/ F m, and F v/ F o ratios indicate a stronger PSII inhibition in cucumber, maize and tomato plants. The kinetics of chlorophyll a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by photoinhibition. The selective suppression of the J-I phase of fluorescence rise kinetics provides evidence for weakened electron donation from the oxidizing side, whereas the accumulation of reduced QA suggests damage to the acceptor side of PSII. These findings imply that the process of chilling-induced photoinhibition involves damage to more than one site in the PSII complexes. Furthermore, comparative analyses of the decline in F v/ F o and photooxidation of P700 explicitly show that the extent of photoinhibitory damage to PSII and photosystem I is similar in leaves of cucumber plants grown at a low irradiance level.  相似文献   

2.
The effects of exogenous application of glycinebetaine (GB) (10 m M ) on growth, leaf water content, water use efficiency, photosynthetic gas exchange, and photosystem II photochemistry were investigated in maize plants subjected to salt stress (50 and 100 m M NaCl). Salt stress resulted in the decrease in growth and leaf relative water content as well as net photosynthesis and the apparent quantum yield of photosynthesis. Stomatal conductance, evaporation rate, and water use efficiency were decreased in salt-stressed plants. Salt stress also caused a decrease in the actual efficiency of PSII ( Φ PSII), the efficiency of excitation energy capture by open PSII reaction centers ( F v'/ F m'), and the coefficients of photochemical quenching ( q P) but caused an increase in non-photochemical quenching (NPQ). Salt stress showed no effects on the maximal efficiency of PSII photochemistry ( F v/ F m). On the other hand, in salt-stressed plants, GB application improved growth, leaf water content, net photosynthesis, and the apparent quantum yield of photosynthesis. GB application also increased stomatal conductance, leaf evaporation rate, and water use efficiency. In addition, GB application increased Φ PSII, F v'/ F m', and q P but decreased NPQ. However, GB application showed no effects on F v/ F m. These results suggest that photosynthesis was improved by GB application in salt-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the actual PSII efficiency.  相似文献   

3.
The effects of summer drought, dew deposition on leaves and autumn rainfall on plant water relations and diurnal variations of photosynthesis were measured in two evergreen shrubs, rosemary ( Rosmarinus officinalis ) and lavender ( Lavandula stoechas ), grown in Mediterranean field conditions. Withholding water for 40 d caused a similar decrease in predawn shoot water potential (ψpd) from c. −0.4 to c. −1.3 MPa in both species, but a 50% decrease in the relative leaf water content in L. stoechas compared with 22% in R. officinalis . A similar decrease in CO2 assimilation rates by c. 75% was observed in water-stressed plants of both species, although L. stoechas showed smaller photosynthesis: stomatal conductance ratio than R. officinalis (35 vs 45 μmol CO2:mol H2O). The relative quantum efficiency of photosystem II photochemistry also decreased by c. 45% at midday in water- stressed plants of both species. Nevertheless, neither L. stoechas nor R. officinalis suffered drought-induced damage to photosystem II, as indicated by the maintenance of the ratio F v: F m throughout the experiment, associated with an increase in the carotenoid content per unit of chlorophyll by c. 62% and c. 30%, respectively, in water-stressed plants. Only L. stoechas absorbed dew by leaves. In this species the occurrence of 6 d of dew over a 15-d period improved relative leaf water content by c. 72% and shoot water potential by c. 0.5 MPa throughout the day in water-stressed plants, although the photosynthetic capacity was not recovered until the occurrence of autumn rainfall. The ability of leaves to absorb dew allowed L. stoechas to restore plant water status, which is especially relevant in plants exposed to prolonged drought.  相似文献   

4.
Diurnal variations of gas exchange, chlorophyll a fluorescence and some related biochemical characteristics in sun-acclimated mature citrus leaves of mist-sprayed (treatment) and unsprayed (control) trees were compared on sunny days during summer to identify the environmental and physiological factors limiting carbon gain in citrus tree canopies. At midday, net photosynthesis and maximal photochemical efficiency of photosystem II ( F v/ F m) in citrus leaves decreased significantly under control conditions, but the decrease was mitigated by mist spraying. Although the content of malondialdehyde, hydrogen peroxide and activities of antioxidant enzymes increased at midday in both mist-sprayed and control leaves, they were much higher in control leaves than in mist-sprayed leaves. The level of D1 protein decreased significantly in control leaves at midday and then was partly recovered later, while that in treated leaves changed to a much lesser extent because of alleviation of photoinhibition by mist spraying. Both the fast and the slow phases of millisecond-delayed light emissions in treated citrus leaves were higher than those in control leaves, indicating that mist spraying protects the normal operation of the photosynthetic apparatus in leaves. Mist spraying also reduced leaf temperatures and the ratio of air to leaf vapour pressure deficit (ALVPD), leading to increases in stomatal conductance ( g s) and alleviation of photoinhibition at midday. It is concluded that the decline of leaf g s under high-ALVPD conditions in summer is an important factor contributing to midday depression of photosynthesis in citrus, and mist spraying is effective in alleviating midday depression of photosynthesis in citrus leaves.  相似文献   

5.
The saturating pulse fluorescence technique was applied to study photoinhibition of photosynthesis in outdoor cultures of the cyanobacterium Spirulina platensis (Nordstedt) Geitler strain M2 grown under high oxygen and low temperature stress. Diurnal changes in maximum photochemical yield (Fv/Fm), photon yield of PSII (ΔF/F 'm), and nonphotochemical quenching (qN) were measured using a portable, pulse-amplitude–modulated fluorometer. When solar irradiance reached the maximum value, the F v/Fm and ΔF/F 'm ratios of the Spirulina cultures grown under high oxygen stress decreased by 35% and 60%, respectively, as compared with morning values. The depression of the Fv/Fm and ΔF/F 'm ratios reached 55% and 84%, respectively, when high oxygen stress was combined with low temperature (i.e. 10° C below the optimal value for growth). Photoinhibition reduced the daily productivity of the culture grown under high oxygen stress by 33% and that of the culture grown under high oxygen–low temperature stress by 60%. Changes in the biomass yield of the cultures correlated well with changes in the daily integrated value of the estimated electron transport rate through the PSII (ΔF/F 'm × photon flux density). The results indicate that on-line chlorophyll fluorescence measurement is a powerful tool for assessing the photosynthetic performance of outdoor Spirulina cultures.  相似文献   

6.
Shoot physiological activity in arctic vascular plants may be controlled by low soil temperatures. While leaves may be exposed to moderate temperatures during the growing season, root temperatures often remain near freezing. In this study, two tundra sedges, Eriophorum vaginatum and Carex bigellowii , were subjected to reduced soil temperatures, and photosynthetic parameters (light saturated photosynthesis A max, variable to maximal fluorescence and F v/ F m stomatal conductance) and abscisic acid concentrations were determined. Stomatal conductance and A max for both E. vaginatum and C. bigellowii strongly decreased with declining soil temperatures. Decreasing soil temperature, however, impacted F v/ F m to a much lesser degree. Root and leaf ABA concentrations increased with decreasing root temperature. These observations support the contention that soil temperature is a significant photosynthetic driving factor in arctic sedges exposed to variable root and shoot temperatures. Because these two species comprise approximately 30% of the vascular ground cover of wet tussock tundra, the soil temperature responses of these sedges potentially scale up to significant effects on ecosystem carbon exchange.  相似文献   

7.
The seasonal changes in photosynthetic properties in 1-year-old needles of Sakhalin spruce ( Picea glehnii ) were measured using the chlorophyll fluorescence technique at various temperatures (5, 10, 20, 25 and 30°C). In the course of seasonal change, a temporary decrease in the quantum yield of PSII electron transport (ΦPSII) was observed just before budbreak. A decline in photochemical quenching ( q P) was observed at the same time as that of ΦPSII but only at the two lowest temperatures (5 and 10°C). Photochemical efficiency of open PSII ( F v'/ F m') also declined just before budbreak at 25 and 30°C. An increase in thermal energy dissipation as indicated by a decrease in F v'/ F m' before budbreak was not significant at lower temperatures (5 and 10°C) in spite of the declines in q P. This implies that thermal energy dissipation necessitated by the decline in ΦPSII might not be sufficiently strong to prevent a decline in q P at lower temperatures. On the other hand, at higher temperatures no decline was observed in q P because ΦPSII decreased to a relatively small extent, therefore thermal energy dissipation is sufficient in coping with the excessive energy accumulation in PSII. Seedlings of Sakhalin spruce exposed to ambient air temperature below 10°C before budbreak exhibited photoinhibition indicated by a decrease in the maximal photochemical efficiency of PSII ( F v/ F m) after an overnight dark adaptation. The present study suggests that 1-year-old shoots of Sakhalin spruce have an increased susceptibility to photoinhibition at low temperature just before budbreak.  相似文献   

8.
The effects on UVB radiation on a subtidal, cohesive-sediment biofilm dominated by the diatom Gyrosigma balticum (Ehrenberg) Rabenhorst were investigated. Chlorophyll fluorescence parameters ( F v/ F m, φPSII), pigment concentrations, cell densities, and carbohydrate fractions were measured in four treatments (no UVBR, ambient UVBR, +7%, and +15% enhancement with UVBR). Enhanced UVBR was provided by a computer-controlled system directly linked to natural diel UVBR levels. Increases in φPSII values in the UVBR-enhanced treatments and a decrease in the steady-state fluorescence yield ( F s) from the surface of the biofilms during the middle and latter part of daily exposure periods suggested that G. balticum responded to enhanced UVBR by migrating down into the sediment. Diatoms in the +15% UVBR treatment also had significantly higher concentrations of β-carotene after 5 days of treatment. Although G. balticum responded to enhanced UVBR by migration and increased β-carotene concentrations, significant reduction in maximum quantum yield of PSII ( F v/ F m) and in minimal fluorescence ( F o) and decreases in cell densities occurred after 5 days. Concentrations of different carbohydrate fractions (colloidal carbohydrate, glucan, exopolymers [EPS]) associated with diatom biomass and motility also decreased in the UVBR-enhanced treatments. Short-term responses (migration) to avoid UVBR appear insufficient to prevent longer-term decreases in photosynthetic potential and biofilm carbohydrate concentration and biomass.  相似文献   

9.
10.
The effects of full-spectrum solar radiation and of solar radiation deprived of total u.v. radiation (λ<395 nm) on the endemic Mediterranean red alga Rissoella verruculosa (Bertoloni) J. Agardh were studied in situ in early summer, from sunrise to sunset. Photosynthetic performance, pigment content and the activities of enzymes related to nutrient uptake, were monitored under both radiation conditions throughout a daylight period.
The doses of solar radiation, measured on the day during which the experiments were carried out (24 June 1997), were 9228·25, 1109·70 and 13·03 kJ m−2 for PAR (λ=400–700 nm), u.v.-A (λ=315–400 nm) and u.v.-B (λ=280–315 nm), respectively. Under these conditions, a clear daily variation in photosynthetic performance was found. However, no significant differences were detected between the two radiation conditions. At noon, strong sunlight impaired O2 evolution by 75%, but complete recovery occurred during the afternoon, reaching similar values to those measured in the early morning. By contrast, photoinhibition of optimal quantum yield ( F v/ F m), and the relative electron transport rate was followed by only a slight recovery during the afternoon. The rate of photosynthesis in air (simulating emersion conditions), estimated by CO2 exchange, showed a negative balance at noon, which was accentuated in plants exposed to the full-solar spectrum.
Significant changes in the activities of nitrate reductase and carbonic anhydrase were found throughout the day under both radiation conditions. In thalli receiving solar radiation deprived of u.v., total CA activity decreased throughout the day. However, in thalli exposed to full-spectrum solar radiation, the activity of the enzyme tended to increase in the afternoon, correlating with an increase in NR activity.  相似文献   

11.
The photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803 exposed to intermittent light was studied by measuring oxygen evolution, respiration and the fluorescence parameters for maximum efficiency of excitation energy capture by photosystem II (PSII) reaction centres ( F v/ F m), PSII quantum yield (ΔF/ F m 1) and non-photochemical quenching (NPQ). Cultures were pre-acclimated to constant light conditions. Block and sinusoidal light regimes were tested using four photon-flux densities (PFDs) applied in light/dark intervals of 1:1, 5:5 and 10:10 min. Light use was higher under the sinusoidal light regime compared with the block regime. The accumulated gross photosynthesis of the cyanobacterium was lower under intermittent light conditions compared with predictions from the photosynthesis-irradiance curve (PI curve). The respiration rates were similar for all light/dark intervals tested. However, the respiration slightly increased with increasing oxygen production for both block and sinusoidal light regime. NPQ, ΔF/ F m' and F v/ F m depended on the PFD rather than on the duration of the light/dark intervals tested, and there was no detected influence of the two applied light regimes.  相似文献   

12.
Abstract: Seedlings of Zea mays L. were grown at optimal (25 °C) and suboptimal (15 °C) temperature and then exposed to severe chilling temperature (6 °C) at their growth light intensity (450 ìmol quanta m−2 s−1) for 4 d. Photosynthetic parameters, hydrogen peroxide, antioxidant contents, and activity of scavenging enzymes were investigated before, during, and after chilling stress. This stress caused a stronger reduction in photosynthetic activity, maximum quantum efficiency of photosystem II primary photochemistry ( F v/ F m), and catalase activity in plants which had been grown at 25 °C rather than at 15 °C. Maize plants grown at suboptimal temperature de-epoxidized their xanthophyll cycle pool to a greater extent and exhibited a faster recovery from chilling stress than plants which had not been acclimated to chilling. Antioxidant content, activity of scavenging enzymes, with the exception of catalase, hydrogen peroxide formation, and the size of the xanthophyll cycle pool were hardly affected by chilling stress. However, chilling induced a temporary increase in the glutathione content and triggered the synthesis of á-tocopherol during the phase of recovery at 25 °C. The results indicate that leaves respond to chilling stress by down-regulation of photosystem II accompanied by de-epoxidation of the xanthophyll cycle pool, probably to prevent enhanced formation of superoxide radicals at photosystem I and, consequently, other reactive oxygen species.  相似文献   

13.
Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (TUV) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal TUV changes and to evaluate the relationship between diurnal changes in TUV and UV-absorbing pigments. Under clear skies, TUV, as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in TUV closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (Fv/Fm) or initial fluorescence yield (Fo). The magnitude of the midday reduction in TUV was greater for young leaves than for older leaves of Verbascum . Imposition of artificial shade eliminated the diurnal changes in TUV in Verbascum , but reduction in solar UV had no effect on diurnal TUV changes in Vicia . In Vicia , the diurnal changes in TUV occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in TUV remain unclear.  相似文献   

14.
Hsu HF  Yang CH 《Plant & cell physiology》2002,43(10):1198-1209
cDNA for a B group MADS box gene OMADS3 was isolated and characterized from Oncidium Gower Ramsey, an important species of orchid. OMADS3 encoding a 204 amino acid protein showed high sequence homology to both paleoAP3 and TM6 lineage of B group MADS box gene such as monocots AP3 homologue LMADS1 in lily and GDEF1 in Gerbera hybrida. Despite the sequence homology, consensus motifs identified in the C-terminal region of B group genes were absent in OMADS3. Southern analysis indicated that OMADS3 was present in O. Gower Ramsey genome in low copy numbers. Different from most B group genes, OMADS3 mRNA was detected in all four floral organs as well as in vegetative leaves. This is similar to the expression pattern of GDEF1. 35S::OMADS3 transgenic plants showed novel phenotypes by producing terminal flowers similar to those observed in transgenic plants ectopically expressed A functional genes such as AP1. Ectopic expression of OMADS3 cDNA truncated with the MADS box or C terminal region in Arabidopsis generated novel ap2-like flowers in which sepals and petals were converted into carpel-like and stamen-like structures. Yeast two-hybrid analysis indicated that OMADS3 is able to strongly form homodimers. Our results suggested that OMADS3 might represent an ancestral form of TM6-like gene which was conserved in monocots with a function similar to A functional gene in regulating flower formation as well as floral initiation.  相似文献   

15.
Methyl salicylate (MeSA) is thought to have a major role in biotic and abiotic stresses by acting as a signal to trigger the oxidative burst, which is needed to activate gene expression in plant stress responses. To assess the potential effects of sustained foliar accumulation of MeSA on plant stress tolerance, the extent of photo- and antioxidant protection, lipid peroxidation and visual leaf area damage were evaluated in MeSA-treated ( c. 60 nl l−1 in air) and control holm oak ( Quercus ilex L.) plants exposed to heat stress. Control plants showed an increase in foliar MeSA levels up to 1.8 nmol [gDW]−1 as temperature increased and they displayed tolerance to temperatures as high as 45°C, which might be attributed, at least in part, to enhanced xanthophyll de-epoxidation and increases in ascorbate and α-tocopherol. MeSA-treated plants showed a sustained foliar accumulation of this compound, with values ranging from 10 to 23 nmol [gDW]−1 throughout the experiment. These plants showed lower ascorbate and tocopherol levels and higher oxidative damage at 50°C than controls, as indicated by enhanced malondialdehyde levels and leaf area damage and lower maximum efficiency of PSII photochemistry ( F v/ F m ratio). These results demonstrate that a sustained foliar accumulation of MeSA is detrimental to plant function and that it can reduce thermotolerance in holm oak by altering antioxidant defences.  相似文献   

16.
Fluorescence characteristics and growth of seedling snow gum ( Eucalyptus pauciflora Sieb. ex Spreng.) during autumn and winter were related to variation in radiation and temperature regime in a fragmented forest. Seedlings were planted in four treatments along transects perpendicular to tree island edges to characterize plant responses to microclimates ranging from those of cleared areas to those beneath forest canopies. Three-dimensional mapping of seedling leaf display, in combination with information retrieved from hemispherical photographs about shading from overstory canopies, were used to calculate the intercepted amounts of direct radiation energy for unit area of leaves on clear days (IDRE) . IDRE was highest on the outside, most variable at the edges and lowest well inside the tree islands. Minimum temperature decreased with increasing view of the sky. Photoinhibition, measured as decrease in F v/ F m, was correlated with spatial and seasonal differences in weekly minimum temperature and IDRE . Seedlings in the open and under the most canopy cover, with low variability in IDRE in a scale of weeks, exhibited less variability in photoinhibition than those growing along forest edges. Seedlings in the open tended to be most photoinhibited and grew the most. The combination of increased IDRE with reduced minimum temperatures resulted in persistent and strong photoinhibition as the season progressed. Results are discussed in relation to the potential for seedling establishment following forest fragmentation.  相似文献   

17.
The objective of the present study was to determine the influence of reduced irradiance on the activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and respiratory enzymes. Rooted cuttings of the tropical epiphyte. Ficus benjamina L., were grown in a shaded environment that excluded approximately 50% of the natural photosynthetically active irradiance (890 μmol m−2 s−1) for 4 months. Established plants were transferred and grown for 10 months under a range of irradiance levels with daily average maxima varying from a full-sun environment to 20% full sun (100%−1735; 50%−890; 40%−695; and 20%−303 μmol m−2s−1). Chlorophyll, carotenoid and soluble protein content increased in Ficus leaves as irradiance level decreased, while Rubisco increased on a fresh weight basis but decreased on a protein basis. Glycolytic enzymes, enolase and pyruvate kinase, showed higher activities in full-sun plants on a protein and fresh weight basis. However, the activity of two mitochondrial enzymes, aconitase and malate dehydrogenase, was not different under the various irradiance levels. When transferred to a very low irradiance environment (18 μmol m−2 s−1), mature leaves exhibited increased chlorophyll and carotenoid levels regardless of previous irradiance treatment. Exposure to very low irradiance resulted in a large increase in enolase and pyruvate kinase activities. Only plants grown under full sun conditions showed a decline in Rubisco activity following growth at very low irradiance. Together, these studies demonstrate the ability of mature leaves of Ficus to biochemically adjust photosynthetic and respiratory components over a wide range of irradiance.  相似文献   

18.
We quantified the metabolic cost to the Antarctic leafy liverwort Cephaloziella varians of responding to an abrupt increase in ultraviolet B (UVB) radiation exposure in the natural environment at Rothera Point on the western Antarctic Peninsula (67 °34'S, 68 °07'W). The liverwort was protected from exposure to UVB radiation for 44 days with screens containing Mylar polyester, after which time its thalli, which are normally black in colour, had become green owing to reduced concentrations of an anthocyanidin, identified here as riccionidin A, in thallus tips. Thalli were then exposed to an abrupt increase in UVB radiation by removing the screens. The thalli became visibly darker within 48 h of the screens being removed, resynthesizing riccionidin A to the same concentration as that present in thalli outside screens during this period. Chlorophyll fluorescence measurements indicated that nonphotochemical quenching was higher in the thalli formerly under the screens than in those not previously covered with screens, but that F v/ F m and photochemical quenching were the same in the two groups of thalli. We used data from aqueous phase oxygen electrode measurements to calculate an estimate for carbon fixation by C. varians during the 48 h after the screens were removed. Assuming a photosynthetic quotient for Antarctic bryophytes of 1, these analyses indicated that the minimum weight of carbon used to synthesize riccionidin A was equivalent to 1.85% of the carbon fixed by thalli during the 48 h after the abrupt increase in UVB radiation exposure.  相似文献   

19.
1. Shade-tolerant species that inhabit the understorey have a range of leaf lifetimes (from 1 to 8 years), which may indicate a variety of strategies for dealing with increases in light associated with tree-fall gaps. We hypothesized that species with long-lived leaves should be more tolerant of an increase in light levels than species with short-lived leaves.
2. In understorey plants of 12 shade-tolerant rain-forest species, photoinhibition, measured as a reduction in the chlorophyll fluorescence parameter F v/ F m when leaf discs were exposed to 1h at 1000μmol m–2s–1, was greater in species with short-lived leaves than species with long-lived leaves.
3. Less photoinhibition in species with long-lived leaves was not associated with higher levels of non-photochemical dissipation (NPQ) of absorbed light, but may be the result of a higher yield of photosystem II compared with short-lived leaves.
4. Thus, species with long-lived leaves are more tolerant of abrupt increases in light that occur when tree-fall gaps are formed than species with short-lived leaves.
5. Discs from leaves of all species growing in tree-fall gaps had higher levels of NPQ, yield of photosystem II and more rapid recovery from photoinhibition than leaves developed in the understorey; however, there were no differences among species with short- and long-lived leaves.  相似文献   

20.
The effects of soil temperature on the shoot phenology, carbohydrate dynamics, chlorophyll fluorescence and cold hardiness of 4-year-old Norway spruce seedlings ( Picea abies L. Karst.) were studied. The experiment was carried out under controlled conditions in the Joensuu dasotrons. Air conditions were similar but soil temperatures differed by treatments (9, 13, 18 and 21°C) during the second growing period in the dasotrons. The after-effects of the treatments were investigated during the third growing period following the treatments. Low soil temperature increased the starch content of needles and delayed the loss of starch at the end of the growing season. The photochemical efficiency ( F v/ F m) of the PSII of the current-year needles was reduced at the lowest soil temperature. The cold hardiness of needles correlated with the soluble sugar content. The differences in soil temperature had no effect on the timing of bud burst. No after-effects from the treatments were observed during the third growing period in the dasotrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号