首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Methodological studies on the histochemical technique for the demonstration of G6Pase activity showed that the occurrence of common artifacts: morphological destruction, extracellular precipitation of reaction product and nuclear staining are dependent on the concentration of lead nitrate, buffer and substrate. By studying the effects of systematic variation of the incubation media on the histochemical reaction optimal concentrations of either of these components were determined. An improved medium containing 3.6 mM lead nitrate, 40 mM tris-maleate buffer, pH 6.5, 10 mM G6P and 300 mM sucrose was used for the study of G6Pase distribution patterns in liver acini of juvenile and adult rats of both sexes and in those of starved adult female rats. The results obtained indicate sex dependent differences in the functional organization of the liver acinus and furthermore demonstrate the rapid functional adaptability of liver parenchyma to changes of the nutritional situation.Supported by a grant of the Deutsche Forschungsgemeinschaft  相似文献   

2.
We have optimized a cerium-diaminobenzidine-based method for histochemical analysis of glucose-6-phosphatase (G6Pase) activity and have determined quantitative data on the zonal distribution pattern in the liver acinus of fasted male rats. In the cerium-diaminobenzidine technique, cerium instead of lead ions is used as capturing reagent for the enzymatically liberated phosphate. For light microscopy, the primary reaction product, cerium phosphate, is then visualized by conversion into cerium perhydroxide using hydrogen peroxide and subsequent oxidative polymerization of diaminobenzidine to diaminobenzidine brown as the final reaction product. Variation of the substrate (glucose-6-phosphate) concentration in the incubation medium yielded in periportal zones a KM value of 2.3 +/- 0.7 mM and a Vmax value of 0.96 +/- 0.18 (expressed as mean integrated absorbance). In perivenous zones a KM value of 1.1 +/- 0.4 mM and a Vmax value of 0.51 +/- 0.08 were calculated. The cytophotometric analysis performed in this study demonstrated for the first time that a functional difference of G6Pase, the key enzyme for gluconeogenesis, exists in the periportal and perivenous zones of the liver acinus. Periportal zones contain twice as many enzyme molecules (high Vmax) as perivenous zones, but the affinity for the substrate is twice as low. This may have important implications for the concept of metabolic zonation of the liver and also for glucose homeostasis in the blood.  相似文献   

3.
H F Teutsch 《Histochemistry》1978,58(4):281-288
Qualitative histochemical G6Pase distribution patterns obtained with an improved method (Teutsch, 1978) served as the basis for a zonal microdissection of the liver acinus. G6Pase activity was determined quantitatively in tissue samples of zones 1 and 3 by a microfluorometric method (Burch et al., 1978). Using a correlation system it could be demonstrated that the histochemical distribution pattern obtained with the improved method was in better agreement with quantitatively estimated zonal differences of G6Pase activity, both in fed and starved female rats, than with the Wachstein and Meisel medium (1956). From a total of 50 tissue samples analyzed the following average G6Pase activities were calculated: in fed animals 15.36 +/- 3.48 U/g dry weight in zone 1, and 9.28 +/- 2.15 U/g dry weight in zone 3; in starved female rats 42.50 +/- 8.20 U/g dry weight in zone 1, and 29.25 +/- 5.68 U/g dry weight in zone 3. The qualitative histochemical as well as quantitative zonal differences of G6Pase activities are taken as further support for the hypothesis of metabolic zonation of liver parenchyma.  相似文献   

4.
Glucose-6-phosphatase (G6Pase) is a multicomponent system that catalyzes G6P hydrolysis. To determine the specificity of the histochemical reaction of G6Pase, we investigated the inhibitory effect of diethyl pyrocarbonate (DEPC), a specific and very effective inhibitor of the phosphohydrolase component of the G6Pase system, in normal human liver. The inactivation of the histochemical enzymatic activity by DEPC was monitored by determining the mean brightness of the microscopic image and the histogram of light intensity distributions. The results obtained indicate that the histogram is more sensitive than the mean brightness to variations of enzymatic activities, and that the percent of pixels brighter than a convenient level is directly proportional to DEPC concentration. This study indicates that DEPC can be used as an efficient inhibitor of the histochemical reaction of G6Pase.  相似文献   

5.
Summary Qualitative histochemical G6Pase distribution patterns obtained with an improved method (Teutsch, 1978) served as the basis for a zonal microdissection of the liver acinus. G6Pase activity was determined quantitatively in tissue samples of zones 1 and 3 by a microfluorometric method (Burch et al., 1978). Using a correlation system it could be demonstrated that the histochemical distribution pattern obtained with the improved method was in better agreement with quantitatively estimated zonal differences of G6Pase activity, both in fed and starved female rats, than with the Wachstein and Meisel medium (1956). From a total of 50 tissue samples analyzed the following average G6Pase activities were calculated: in fed animals 15.36±3.48 U/g dry weight in zone 1, and 9.28±2.15 U/g dry weight in zone 3; in starved female rats 42.50±8.20 U/g dry weight in zone 1, and 29.25±5.68 U/g dry weight in zone 3. The qualitative histochemical as well as quantitative zonal differences of G6Pase activities are taken as further support for the hypothesis of metabolic zonation of liver parencyma.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

6.
 Glucose-6-phosphatase (G6Pase) activity has been determined in periportal and pericentral areas of the liver of normal male rats. Measurements were performed on unfixed cryostat sections mounted on semipermeable membranes. In the present study, the oxidized primary reaction product of a cerium-based histochemical method [Ce(IV)perhydroxyphosphate] instead of the final reaction product after a second-step incubation was measured. For quantification of the amount of Ce(IV)perhydroxyphosphate formed the digital image analyzing system Quantimet 500+ was used. Estimated values of optical densities of Ce(IV)perhydroxyphosphate over test areas were employed for calculation of kinetic parameters of (G6Pase). Highest activities of G6Pase (higher K m and V max levels) were found in periportal areas of the rat liver, indicating a higher amount of active enzyme molecules and a lower affinity for the substrate. Differences in values for both K m and V max between periportal and pericentral zones were highly significant and closely comparable to those for male fed rats. Correlations between K m and V max were significant for periportal as well for pericentral liver areas. The results of the present study thus allow the same biological implications as histochemical methods employing a final reaction for quantification of enzyme activities. The present method avoids the drawbacks of enhancement reactions and demonstrates the feasibility of in situ analysis of enzyme kinetic parameters by quantification of oxidized primary cerium reaction products. Accepted: 8 January 1996  相似文献   

7.
Coffee is the main source of chlorogenic acid in the human diet, and it contains several chlorogenic acid isomers, of which the 5‐caffeoylquinic acid (5‐CQA) is the predominant isomer. Because there are no available data about the action of chlorogenic acids from instant coffee on hepatic glucose‐6‐phosphatase (G‐6‐Pase) activity and blood glucose levels, these effects were investigated in rats. The changes on G‐6‐Pase activity and liver glucose output induced by 5‐CQA were also investigated. Instant coffee extract with high chlorogenic acids content (37.8%) inhibited (p < 0.05) the G‐6‐Pase activity of the hepatocyte microsomal fraction in a dose‐dependent way (up to 53), but IV administration of this extract did not change the glycaemia (p > 0.05). Similarly, 5‐CQA (1 mM) reduced (p < 0.05) the activity of microsomal G‐6‐Pase by about 40%, but had no effect (p > 0.05) on glucose output arising from glycogenolysis in liver perfusion. It was concluded that instant coffee extract with high content of chlorogenic acids inhibited hepatic G‐6‐Pase in vitro, but failed to reduce the glycaemia probably because the coffee chlorogenic acids did not reach enough levels within the hepatocytes to inhibit the G‐6‐Pase and reduce the liver glucose output. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The activity of the liver enzymes G6Pase, G6PDH and ME was studied in rats of 2-9 weeks old by histochemical means. In addition, G6PDH and ME activity was quantitatively determined in homogenates. In the 2nd and 3rd week G6Pase is similarly distributed in both sexes: while in the periportal zone high activity is demonstrable, the perivenous zone shows only low activity. After this period a nearly homogeneous distribution pattern becomes evident in all animals. Sex difference occurs after the 6th week: in the livers of male rats the periportal "maximum" is sometimes combined with a second peak in the perivenous area, in females a steep gradient emerges with high activity in the periportal zone and a low one in the perivenous zone. In the first postnatal weeks G6PDH activity is very low in parenchymal cells, but very prominent in Kupffer cells. Around the 5th week there is an increase, predominantly in the perivenous zone of both sexes. While there is again a further decrease demonstrable in male rats, the G6PDH activity of female rats rises to high adult values. This increase seems to be restricted to the perivenous zone. ME can be demonstrated at first in leucocytes. In the course of the 3rd week there is an increase of activity in both sexes: ME is demonstrable in parenchymal cells of the perivenous area and in scattered hepatocytes of the periportal area. In male rats, the perivenous activity is diminished towards the end of the investigation period, in females, however, a high activity remains in the perivenous zone. The data show that in females the activity of NADP dependent enzymes is high in the perivenous zone, so it may be assumed that a lipogenic area is situated around the terminal efferent vessels. Because of the sex difference this area may be hormone-dependent. The lipogenic area is situated opposite to the gluco(neo)genic area which corresponds to the periportal zone.  相似文献   

9.
The purpose of the present study was to demonstrate the presence of glucose-6-phosphatase (G6Pase) in fetal membranes from various gestational ages (20-40 weeks of gestation). Ultrastructural enzyme-histochemical analysis of G6Pase was performed using cerium and lead as capturing agents. Precipitates indicating G6Pase activity were present mainly in the endoplasmic reticulum and partly in the nuclear envelope of chorion laeve trophoblasts, but absent in amniotic epithelial cells. Stringent histochemical control experiments performed ensured specific detection of G6Pase activity. The results indicate that histochemically detectable G6Pase is present in the chorion laeve trophoblasts of human fetal membranes. This enzyme may have some physiological significance in carbohydrate metabolism in human fetal membranes and regulation of amniotic fluid glucose concentration.  相似文献   

10.
11.
A deficiency in microsomal glucose-6-phosphatase (G6Pase) activity causes glycogen storage disease type 1 (GSD-1), a clinically and biochemically heterogeneous group of diseases. It has been suggested that catalysis by G6Pase involves multiple components, with defects in the G6Pase catalytic unit causing GSD-1a and defects in the putative substrate and product translocases causing GSD-1b, 1c, and 1d. However, this model is open to debate. To elucidate the G6Pase system, we have examinedG6PasemRNA expression, G6Pase activity, and glucose 6-phosphate (G6P) transport activity in the murine liver and kidney during normal development. In the liver,G6PasemRNA and enzymatic activity were detected at 18 days gestation and increased markedly at parturition, before leveling off to adult levels. In the kidney,G6PasemRNA and enzymatic activity appeared at 19 days gestation and peaked at weaning, suggesting that kidney G6Pase may have a different metabolic role.In situhybridization analysis demonstrated that, in addition to the liver and kidney, the intestine expressedG6Pase.Despite the expression ofG6Pasein the embryonic liver, microsomal G6P transport activity was not detectable until birth, peaking at about age 4 weeks. Our study strongly supports the multicomponent model for the G6Pase system.  相似文献   

12.
The effect of streptozocin diabetes on the expression of the catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46) of the glucose-6-phosphatase system (G6Pase) was investigated in rats. In addition to the documented effect of diabetes to increase p36 mRNA and protein in the liver and kidney, a approximately 2-fold increase in the mRNA abundance of p46 was found in liver, kidney, and intestine, and a similar increase was found in the p46 protein level in liver. In HepG2 cells, glucose caused a dose-dependent (1-25 mM) increase (up to 5-fold) in p36 and p46 mRNA and a lesser increase in p46 protein, whereas insulin (1 microM) suppressed p36 mRNA, reduced p46 mRNA level by half, and decreased p46 protein by about 33%. Cyclic AMP (100 microM) increased p36 and p46 mRNA by >2- and 1.5-fold, respectively, but not p46 protein. These data suggest that insulin deficiency and hyperglycemia might each be responsible for up-regulation of G6Pase in diabetes. It is concluded that enhanced hepatic glucose output in insulin-dependent diabetes probably involves dysregulation of both the catalytic subunit and the putative glucose-6-phosphate translocase of the liver G6Pase system.  相似文献   

13.
Total hepatic Mg(2+) content decreases by >25% in animals maintained for 2 weeks on Mg(2+) deficient diet, and results in a >25% increase in glucose 6-phosphatase (G6Pase) activity in isolated liver microsomes in the absence of significant changed in enzyme expression. Incubation of Mg(2+)-deficient microsomes in the presence of 1mM external Mg(2+) returned G6Pase activity to levels measured in microsomes from animals on normal Mg(2+) diet. EDTA addition dynamically reversed the Mg(2+) effect. The effect of Mg(2+) or EDTA persisted in taurocholic acid permeabilized microsomes. An increase in G6Pase activity was also observed in liver microsomes from rats starved overnight, which presented a ~15% decrease in hepatic Mg(2+) content. In this model, G6Pase activity increased to a lesser extent than in Mg(2+)-deficient microsomes, but it could still be dynamically modulated by addition of Mg(2+) or EDTA. Our results indicate that (1) hepatic Mg(2+) content rapidly decreases following starvation or exposure to deficient diet, and (2) the loss of Mg(2+) stimulates G6P transport and hydrolysis as a possible compensatory mechanism to enhance intrahepatic glucose availability. The Mg(2+) effect appears to take place at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment.  相似文献   

14.
Total hepatic Mg2+ content decreases by >25% in animals maintained for 2 weeks on Mg2+ deficient diet, and results in a >25% increase in glucose 6-phosphatase (G6Pase) activity in isolated liver microsomes in the absence of significant changed in enzyme expression. Incubation of Mg2+-deficient microsomes in the presence of 1 mM external Mg2+ returned G6Pase activity to levels measured in microsomes from animals on normal Mg2+ diet. EDTA addition dynamically reversed the Mg2+ effect. The effect of Mg2+ or EDTA persisted in taurocholic acid permeabilized microsomes. An increase in G6Pase activity was also observed in liver microsomes from rats starved overnight, which presented a ∼15% decrease in hepatic Mg2+ content. In this model, G6Pase activity increased to a lesser extent than in Mg2+-deficient microsomes, but it could still be dynamically modulated by addition of Mg2+ or EDTA. Our results indicate that (1) hepatic Mg2+ content rapidly decreases following starvation or exposure to deficient diet, and (2) the loss of Mg2+ stimulates G6P transport and hydrolysis as a possible compensatory mechanism to enhance intrahepatic glucose availability. The Mg2+ effect appears to take place at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment.  相似文献   

15.
The histochemical localization of G6Pase and 5-Nase in the digestive system of Ophiocephalus (Channa) punctatus was studied. The highest activities of these enzymes were found in the liver. Appreciable activity was also found in the anterior intestine (duodenum) and pyloric caeca. The activity faded toward the middle and posterior intestine and rectum. In the stomach the activity was moderate. The activity of 5-Nase was weaker than that of G6Pase. In the stomach the enzymes were localized in the mucosa and gastric glands. The absorptive columnar epithelial cells were the major sites of localization in the intestine. The goblet cells were negative. The G6Pase activity was associated with the cytoplasm, while the 5-Nase activity was found in the cell membranes and the nuclei.  相似文献   

16.
Summary The increasing concern and the efforts in determining neurological effects in offsprings resulting from maternal exposure to xenobiotics are faced with several difficulties in monitoring damage to the central nervous system. In this paper, the efficiency of several enzyme histochemical reactions for analysing the forebrain and the trigeminal ganglia of rat foetuses are reported. Brains of 20-day-old Sprague-Dawley rat foetuses were frozen and analysed for 18 enzymes that had previously been used to monitor initial injury caused by toxic compounds in liver and other organs. Eight enzymes appeared suitable as histochemical markers for the functional integrity of different areas in brain and ganglia of rats exposed to xenobiotics. They were lactate, malate, glycerophosphate (NAD-linked), succinate, aldehyde and glucose 6-phosphate dehydrogenases, -glycerophosphate-menadione oxidoreductase and cytochromec oxidase. The activities of the enzymes were determined by microphotometry and the arrangement of absorbances of the enzyme final reaction products into appropriate analytical tables is proposed as an efficient procedure for data analysis.Abbreviations AcChE acetylcholinesterase - AldDH aldehyde dehydrogenase - ALKPase alkaline phosphatase - 5AMPase adenosine monophosphatase - ATPase Mg2+ dependent adenosine triphosphatase - CytOx cytochromec oxidase - GAPDH glyceraldehyde phosphate dehydrogenase - GIDH glutamate dehydrogenase - GLPDH glycerophosphate: NAD oxidoreductase - CPODH glycerophosphate:menadione oxidoreductase - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - IDH lactate dehydrogenase - MaDH malate dehydrogenase - MAO monoamine oxidase - NADPH, DH, NADPH tetrazolium oxidoreductase - SuDH succinate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

17.
Genetically obese normotensive rats, LA/N-corpulent (cp), were fed ad libitum diets containing either 54% sucrose or cooked corn starch for 12 weeks. Twenty-four rats were used for the study; half were corpulent (cp/cp) and half were lean (cp/+ or +/+). Fasting levels of plasma insulin, glucose, corticosterone, glucagon and growth hormone, and activities of liver and epididymal fat pad glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), and liver and kidney glucose-6-phosphatase (G6Pase), fructose 1,6-diphosphatase (FDPase), and phosphoenolpyruvate carboxykinase (PEPCK) were measured. A significant phenotype effect was observed in insulin, corticosterone, growth hormone, and liver G6PD, ME, FDPase, and kidney PEPCK, G6Pase, FDPase, and epididymal fat pad G6PD and ME (corpulent greater than lean), and glucagon (lean greater than corpulent). Diet effect (sucrose greater than starch) was significant for plasma glucose, liver ME, and kidney G6Pase. Although not significant at the P less than 0.05 level, insulin, corticosterone, liver G6PD and FDPase and kidney FDPase tended to be higher in sucrose-fed rats. This study suggests that the corpulent rat is more lipogenic and gluconeogenic than the lean, and that the hormones responsible are effective in keeping both the lipogenic and gluconeogenic enzyme activity elevated.  相似文献   

18.
This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.  相似文献   

19.
To examine the relationship between structure and function of glucose-6-phosphatase (G6Pase) in fish, we undertook molecular cloning and modulation of G6Pase expression by starvation and refeeding on diets with different nutrient composition in the liver of the carnivorous fish, Sparus aurata. A cDNA encoding the full-length G6Pase catalytic subunit from the liver of S. aurata was isolated. This cDNA encodes a 350-amino acid protein, with low homology to the mammalian G6Pase, although it contains most of the key residues required for catalysis. Based on hydrophobicity and membrane structure prediction, we propose a model containing nine-transmembrane regions for S. aurata G6Pase. Northern blots showed that refeeding after a prolonged starvation rapidly reverses the glucose/glucose-6-phosphate substrate cycle flux in the fish liver through decreased G6Pase expression and strong glucokinase (GK) induction. The effect of refeeding different diets on G6Pase and GK expression, indicated that hepatic intermediary metabolism of fish fed diets with low protein/high carbohydrate diets is impelled towards utilization of dietary carbohydrates, by means of modulation of GK mRNA levels rather than G6Pase expression. These findings challenge the role attributed to dysregulation of G6Pase or GK expression in the low ability of carnivorous fish to metabolise glucose.  相似文献   

20.
A fine control of the blood glucose level is essential to avoid hyper- or hypo-glycemic shocks associated with many metabolic disorders, including diabetes mellitus and type I glycogen storage disease. Between meals, the primary source of blood glucose is gluconeogenesis and glycogenolysis. In the final step of both pathways, glucose-6-phosphate (G6P) is hydrolyzed to glucose by the glucose-6-phosphatase (G6Pase) complex. Because G6Pase (renamed G6Pase-alpha) is primarily expressed only in the liver, kidney, and intestine, it has implied that most other tissues cannot contribute to interprandial blood glucose homeostasis. We demonstrate that a novel, widely expressed G6Pase-related protein, PAP2.8/UGRP, renamed here G6Pase-beta, is an acid-labile, vanadate-sensitive, endoplasmic reticulum-associated phosphohydrolase, like G6Pase-alpha. Both enzymes have the same active site structure, exhibit a similar Km toward G6P, but the Vmax of G6Pase-alpha is approximately 6-fold greater than that of G6Pase-beta. Most importantly, G6Pase-beta couples with the G6P transporter to form an active G6Pase complex that can hydrolyze G6P to glucose. Our findings challenge the current dogma that only liver, kidney, and intestine can contribute to blood glucose homeostasis and explain why type Ia glycogen storage disease patients, lacking a functional liver/kidney/intestine G6Pase complex, are still capable of endogenous glucose production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号