首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The αvβ6 integrin is a promising target for cancer therapy. Its expression is up-regulated de novo on many types of carcinoma where it may activate transforming growth factor-β1 and transforming growth factor-β3, interact with the specific extracellular matrix proteins and promote migration and invasion of tumor cells. The viral protein 1 (VP1) coat protein of the O1 British field strain serotype of foot-and-mouth disease virus is a high-affinity ligand for αvβ6, and we recently reported that a peptide derived from VP1 exhibited αvβ6-specific binding in vitro and in vivo. We hypothesized that this peptide could confer binding specificity of an antibody to αvβ6. A 17-mer peptide of VP1 was inserted into the complementarity-determining region H3 loop of MFE-23, a murine single-chain Fv (scFv) antibody reactive with carcinoembryonic antigen (CEA). The resultant scFv (B6-1) bound to αvβ6 but retained residual reactivity with CEA. This was eliminated by point mutation (Y100bP) in the variable heavy-chain domain to create an scFv (B6-2) that was as structurally stable as MFE-23 and reacted specifically with αvβ6 but not with α5β1, αvβ3, αvβ5, αvβ8 or CEA. B6-2 was internalized into αvβ6-expressing cells and inhibited αvβ6-dependent migration of carcinoma cells. B6-2 was subsequently humanized. The humanized form (B6-3) was obtained as a non-covalent dimer from secretion in Pichia pastoris (115 mg/l) and was a potent inhibitor of αvβ6-mediated cell adhesion. Thus, we have used a rational stepwise approach to create a humanized scFv with therapeutic potential to block αvβ6-mediated cancer cell invasion or to deliver and internalize toxins specifically to αvβ6-expressing tumors.  相似文献   

2.
To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity.  相似文献   

3.
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C44Mab-5 (IgG1, kappa), recognized both CD44s and CD44v3-10. C44Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C44Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C44Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.  相似文献   

4.
Background Although cancer of the prostate is one of the most commonly diagnosed cancers in men, no curative treatment currently exists after its progression beyond resectable boundaries. Therefore, new agents for targeted treatment strategies are needed. Cross-linking of tumor antigens with T-cell associated antigens by bispecific monoclonal antibodies have been shown to increase antigen-specific cytotoxicity in T-cells. Since the prostate-specific membrane antigen (PSMA) represents an excellent tumor target, immunotherapy with bispecific diabodies could be a promising novel treatment option for prostate cancer. Methods A heterodimeric diabody specific for human PSMA and the T-cell antigen CD3 was constructed from the DNA of anti-CD3 and anti-PSMA single chain Fv fragments (scFv). It was expressed in E. coli using a vector containing a bicistronic operon for co-secretion of the hybrid scFv VHCD3-VLPSMA and VHPSMA-VLCD3. The resulting PSMAxCD3 diabody was purified from the periplasmic extract by immobilized metal affinity chromatography (IMAC). The binding properties were tested on PSMA-expressing prostate cancer cells and PSMA-negative cell lines as well as on Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability test (WST) was used. For in vivo evaluation the diabody was applied together with human peripheral blood lymphocytes (PBL) in a C4-2 xenograft-SCID mouse model. Results By Blue Native gel electrophoresis, it could be shown that the PSMAxCD3 diabody is mainly a tetramer. Specific binding both to CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown by flow cytometry. In vitro, the diabody proved to be a potent agent for retargeting PBL to lyze C4-2 prostate cancer cells. Treatment of SCID mice inoculated with C4-2 tumor xenografts with the diabody and PBL efficiently inhibited tumor growth. Conclusions The PSMAxCD3 diabody bears the potential for facilitating immunotherapy of prostate cancer and for the elimination of minimal residual disease. P. Bühler and P. Wolf equally contributed to the work.  相似文献   

5.
 The mechanism responsible for tissue specific localization of γδ T cell subsets is not well understood. In order to explain the sequestration of specific γδ T cell subsets in the peripheral blood and tumor tissue of patients with esophageal cancer, we examined the function and expression of adhesion molecules on these cells. A hierarchy in the expression of adhesion molecules was observed. In vitro activated γδ T cells showed dominant expression of LFA-1 (CD11a), VLA-α4 (CD49d), intermediate expression of VLA-α5 (CD49e) and L-selectin (CD62L), but low expression of CD44v6 and αEβ7 (CD103). It was observed that the γδ T cells use LFA-1, L-selectin and CD44v6 to bind to squamous cell carcinoma (SCC) cells, whereas they adhere to fibroblast cells using LFA-1, VLA-α4 and VLA-α5. Vδ1 T cell subsets from the peripheral blood γδ T cells utilize a larger array of adhesion molecules, namely LFA-1, VLA-α4, VLA-α5, L-selectin and αEβ7, to bind to SCC cells compared to the restricted usage of LFA-1, L-selectin and CD44v6 by the Vδ2 T cells. Flow cytometric analysis of tumor infiltrating lymphocytes from the esophageal tumors confirmed the selective accumulation of Vδ1+γδ T cells in the tumor compartment. It thus appears that adhesion molecules expressed on these lymphocytes play an important role in the recruitment and retention of Vδ1 T cells in the tumor milieu. Received: 27 November 2000 / Accepted: 1 March 2001  相似文献   

6.
Antibody-based fusion proteins are the next generation of antibody therapies for cancer and other diseases. CD20 antigen, which is overexpressed on cell membranes in nearly 95% of cases of B-cell Non-Hodgkin’s Lymphoma, is an attractive target for the therapy of B-lymphoid malignancies. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic that now has entered phase II clinical trials. In this study, we prepared an engineered fusion protein, scFv-LDP, consisting of an anti-CD20 scFv fragment and the apoprotein LDP of LDM using DNA recombination. After purification and refolding, scFv-LDP was found to bind specifically to CD20-positive lymphoma cells using ELISA and indirect immunofluorescent cytochemical staining assays. The energized fusion protein scFv-LDP-AE was obtained using molecular reconstitution of the active chromophore AE of LDM and scFv-LDP. MTT assay revealed potent cytotoxicity of scFv-LDP-AE to CD20-positive Raji and Daudi cells, with IC50 values of 1.21×10−11 and 6.24×10−11 mol L−1, respectively. An in vivo subcutaneous xenograft model of CD20-positive B cell lymphoma in BALB/c (nu/nu) mice was also utilized. Drugs were given intravenously on day 14 and 21 after tumor transplantation. In terms of maximal tolerated doses, scFv-LDP-AE at 0.3 mg kg−1 suppressed tumor growth by 79.3%, and LDM at 0.05 mg kg−1 by 68.6% (P<0.05). Results suggested scFv-LDP-AE could be a potential candidate for tumor-targeting therapy.  相似文献   

7.
The administration of antibodies against the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a promising approach in the upregulation of immune responses in many cancers and infectious diseases. The single-chain variable fragment of antibody against CTLA4 is also useful in developing immunotoxins that might be used in the treatment of cancer, transplant rejection, and autoimmune diseases. Here, we report the production of a soluble and functional scFv antibody against CTLA4 by using Pichia pastoris as the expression system. The gene encoding scFv hS83 with an additional 6His-tag at the 5’-end was inserted into the expression vector pPIC9K. Then, the transformants were double-screened on plates containing 0.25 mg/mL and 1.5 mg/mL of neomycin G418 and many clones with different levels of G418-resistance were selected for further studies on expression. After induction by the addition of methanol, various levels of hS83 were detected in the supernatant of P. pastoris containing pPIC9K-hS83. Clones with low G418-resistance produced more hS83 than those with higher G418-resistance. Under the optimized conditions (initial inoculum, 40 A600nm AU/mL; pH 6.0; methanol concentration, 3.0%; induction time, 72 h), approximately 16–20 mg protein could be recovered from 1 L of the culture. The purified hS83 had a stronger binding ability towards CTLA4-positive Raji cells than CTLA4-negative ECV304 cells. This finding indicates that the antibody produced by P. pastoris is functional and may be used in immunotherapy for cancer, infection, transplant rejection, and autoimmune diseases. Huawei Cai and Lihong Chen contributed equally to this work.  相似文献   

8.
Antibody-targeted liposomal anticancer drugs combine the specificity of antibodies with large payloads of entrapped drugs. We previously showed that liposomal doxorubicin (DXR) targeted via anti-CD19 monoclonal antibodies (mAb) or their Fab' fragments against the B-cell antigen CD19 led to improved therapeutic effects in murine B-cell lymphoma models relative to non-targeted liposomal DXR. We now are examining the use of anti-CD19 single chain fragments of the antibody variable region (scFv) as a targeting moiety, to test the hypothesis that scFv have advantages over full-sized mAb or Fab' fragments. We expressed two different anti-CD19 scFv constructs, HD37-C and HD37-CCH in E. coli, and purified the scFvs using two different methods. The HD37-CCH construct was selected for coupling studies due to its relative stability and activity in comparison to HD37-C. When coupled to liposomes, the HD37-CCH scFv showed increased binding in vitro to CD19-positive Raji cells, compared to non-targeted liposomes. Cytotoxicity data showed that HD37-CCH scFv-targeted liposomes loaded with DXR were more cytotoxic than non-targeted liposomal DXR. Our results suggest that anti-CD19 scFv constructs should be explored further for their potential in treating B-lymphoid leukemias and lymphomas.  相似文献   

9.

Background  

Both thermotherapy and arsenic have been shown to be active against a broad spectrum of cancers. To reduce the limitations of conventional thermotherapy, improve therapeutic anticancer activity, reduce the toxicity of arsenic on normal tissue, and increase tissue-specific delivery, we prepared a nanosized As2O3/Fe3O4 complex (Fe3O4 magnetic nanoparticles encapsulated in As2O3). We assessed the thermodynamic characteristics of this complex and validated the hyperthermia effect, when combined with magnetic fluid hyperthermia (MFH), on xenograft HeLa cells (human cervical cancer cell line) in nude mice. We also measured the effect on the expression of CD44v6, VEGF-C, and MMP-9 which were related to cancer and/or metastasis.  相似文献   

10.
The influence of aging and dietary restriction on increase in intracellular free calcium ([Ca2+]i) of CD4+ lymphocytes from Macaca mulatta was examined after stimulation with anti-CD3 mAb. We used a flow cytometric assay with the dye indo-1 and either direct or reciprocal immunofluorescent staining to dientify CD4+ cells. After stimulation with anti-CD3 mAb, intracellular free calcium responses were reduced in CD4+ lymphocytes from old male and female ad libitum fed monkeys compared to young and adult male or female monkeys. Old female monkeys had significantly lower [Ca2+]i than did old male monkeys. The reduced responses were in part related to a decreased percentage of responding cells. Dietary restrition of males over a four-year period did not alter [Ca2+]i response compared to ad libitum fed male monkeys. Female monkeys of all ages (which were restricted only for four months) also had similar [Ca2+]i responses to ad libitum fed controls. Our data suggest that age-related changes in [Ca2+]i responses are similar between humans and M. mulatta, and that over these intervals, no effects of caloric restrictions can be detected. © 1995 Wiley-Liss, Inc.  相似文献   

11.
 T cells require at least two signals for activation and clonal expansion. The first signal conferring specificity is initiated by interaction of the T cell receptor with peptide-bearing MHC molecules. The second, costimulatory signal can be provided by cell-surface molecules on antigen-presenting cells such as B7-1 (CD80) and B7-2 (CD86), which interact with CD28 on T cells. To direct the costimulatory B7-2 molecule to the surface of tumor cells we have constructed a chimeric fusion protein, which consists of the extracellular domain of human B7-2 fused to a single-chain antibody domain (scFv) specific for the ErbB2 protein, a type I growth factor receptor overexpressed in a high percentage of human adenocarcinomas. This B7-2225-scFv(FRP5) molecule, expressed in the yeast Pichia pastoris and purified from culture supernatants, binds to B7 counter-receptors and to ErbB2. B7-2225-scFv(FRP5) localizes specifically to the surface of ErbB2-expressing target cells, thereby providing a costimulatory signal, which results in enhanced proliferation of syngeneic T cells. Accepted: 14 October 1997  相似文献   

12.
Liu C  Cao X  Zhang Y  Xu H  Zhang R  Wu Y  Lu P  Jin F 《Molecular biology reports》2012,39(5):5875-5881
The aim is to investigate the clinical implications of the Oct-4 and Nestin protein in human breast cancers. A total of 346 cases including 26 fresh and 320 paraffin-embedded tumor tissues were selected for characterizing the frequency of CD44+CD24 tumor cells by flow cytometry and the differential expression of the stem cell-related genes between CD44+CD24 and non-CD44+CD24 tumor cells was analyzed by PCR Array and immunofluorescence. In comparison with the non-CD44+CD24 tumor cells, the CD44+CD24, particularly for those with high percentage of Oct-4+ and Nestin+, tumor cells had higher tumorigenicity by forming mammospheres in vitro. More importantly, 42 (13.125%) out of 320 tumor tissues were positive for Oct-4 and Nestin staining. Universal analysis and multivariate analysis revealed that the expression of Oct-4 and Nestin was associated significantly with younger age, pathogenic degrees, lymph node metastasis and triple-negative breast cancer independently (P < 0.05) as well as shorter survival (P = 0.001). Oct-4 and Nestin were important regulators of the development of breast cancer, and Oct-4 and Nestin may be used as predictors for the prognosis of breast cancers.  相似文献   

13.
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.  相似文献   

14.
Based on anti-idiotypic network theory in light of the need for new antifungal drugs, we attempted to identify biologically active fragments from HM-1 yeast killer toxin and its anti-idiotypic antibody and to compare their potency as an antifungal agent. Thirteen overlapping peptides from HM-1 killer toxin and six peptides from its anti-idiotypic single-chain variable fragment (scFv) antibodies representing the complementarity determining regions were synthesized. The binding affinities of these peptides were investigated and measured by Dot blot and surface plasmon resonance analysis and finally their antifungal activities were investigated by inhibition of growth, colony forming unit assay. Peptide P6, containing the potential active site of HM-1 was highly capable of inhibiting the growth of Saccharomyces cerevisiae but was less effective on pathogenic fungi. However, peptide fragments derived from scFv antibody exerted remarkable inhibitory effect on the growth of pathogenic strains of Candida and Cryptococcus species in vitro. One scFv-derived decapeptide (SP6) was selected as the strongest killer peptide for its high binding affinity and antifungal abilities on both Candida and Cryptococcus species with IC50 values from 2.33 × 10−7 M to 36.0 × 10−7 M. SP6 peptide activity was neutralized by laminarin, a β-1,3-glucan molecule, indicating this peptide derived from scFv anti-idiotypic antibody retains antifungal activity through interaction with cell wall β-glucan of their target fungal cells. Experimental evidence strongly suggested the possibility of development of anti-idiotypic scFv peptide-based antifungal agents which may lead to improve therapeutics for the management of varieties of fungal infections.  相似文献   

15.

Background

At our institute, a chemoradioselection strategy has been used to select patients for organ preservation on the basis of response to an initial 30–40 Gy concurrent chemoradiotherapy (CCRT). Patients with a favorable response (i.e., chemoradioselected; CRS) have demonstrated better outcomes than those with an unfavorable response (i.e., nonchemoradioselected; N-CRS). Successful targeting of molecules that attenuate the efficacy of chmoradioselection may improve results. Thus, the aim of this study was to evaluate the association of a novel cancer stem cell (CSC) marker, CD44 variant 9 (CD44v9), with cellular refractoriness to chemoradioselection in advanced head and neck squamous cell carcinoma (HNSCC).

Materials and Methods

Through a medical chart search, 102 patients with advanced HNSCC treated with chemoradioselection from 1997 to 2008 were enrolled. According to our algorithm, 30 patients were CRC following induction CCRT and 72 patients were N-CRS. Using the conventional immunohistochemical technique, biopsy specimens and surgically removed tumor specimens were immunostained with the anti-CD44v9 specific antibodies.

Results

The intrinsic expression levels of CD44v9 in the biopsy specimens did not correlate with the chemoradioselection and patient survival. However, in N-CRS patients, the CD44v9-positive group demonstrated significantly (P = 0.008) worse prognosis, than the CD44v9-negative group. Multivariate analyses demonstrated that among four candidate factors (T, N, response to CCRT, and CD44v9), CD44v9 positivity (HR: 3.145, 95% CI: 1.235–8.008, P = 0.0163) was significantly correlated with the poor prognosis, along with advanced N stage (HR: 3.525, 95% CI: 1.054–9.060, P = 0.0228). Furthermore, the survival rate of the CD44v9-induced group was significantly (P = 0.04) worse than the CD44v9-non-induced group.

Conclusions

CCRT-induced CD44v9-expressing CSCs appear to be a major hurdle to chemoradioselection. CD44v9-targeting seems to be a promising strategy to enhance the efficacy of chemoradioselection and consequent organ preservation and survival.  相似文献   

16.
There is growing evidence that one of the central common characteristics of tumor and inflammatory cells is their resistance to programmed cell death. This feature results in the accumulation of harmful cells, which are mostly refractory to Fas (FAS, APO-1)-mediated apoptosis. A molecule found on these cells is the transmembrane receptor CD44 with its variant isoforms (CD44v). The establishment of transfectants expressing different CD44v isoforms allowed us to demonstrate that the CD44v6 and CD44v9 isoforms exhibit an antiapoptotic effect and can block Fas-mediated apoptosis. Moreover, we observed that CD44v6 and CD44v9 colocalize and interact with Fas. Importantly, an anti-CD44v6 antibody can abolish the antiapoptotic effect of CD44v6. These results are the first to show that CD44v isoforms interfere with Fas signaling. Our findings improve the understanding of the pathogenesis of cancer and autoimmunity and open new strategies to treat such disorders.  相似文献   

17.
18.
Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow.  相似文献   

19.
Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv–pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC–CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv–antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection.  相似文献   

20.
Listeria monocytogenes is a facultative intracellular Gram-positive bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The L. monocytogenes surface protein InlB interacts with c-Met, the hepatocyte growth factor (HGF) receptor, inducing bacterial internalization in numerous non-phagocytic cells. As InlB and HGF are known to trigger similar signaling pathways upon c-Met activation, we investigated the role of CD44, and more specifically its isoform CD44v6, in bacterial internalization in non-phagocytic cells. Indeed, CD44, the hyaluronic acid transmembrane receptor, and more specifically its isoform CD44v6 have been reported as necessary for the activation of c-Met upon the interaction with either the endogenous ligand HGF or the L. monocytogenes surface protein InlB. Our results demonstrate that, in the cell lines that we used, CD44 receptors play no role in the activation of c-Met, neither during L. monocytogenes entry, nor upon HGF activation. Furthermore, none of the CD44 isoforms was recruited at the L. monocytogenes entry site, and depletion by siRNA of total CD44 or of CD44v6 isoform did not reduce bacterial infections. Conversely, the overexpression of CD44 or CD44v6 had no significant effect on L. monocytogenes internalization. Together our results reveal that the activation of c-Met can be largely CD44-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号