首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subtilosin A is a 35-amino acid long cyclical peptide produced by Bacillus amyloliquefaciens that has potent antimicrobial activity against a variety of human pathogens, including the bacterial vaginosis-related Gardnerella vaginalis. The specific mode of action of subtilosin against G. vaginalis was elucidated by studying its effects on the proton motive force's (PMF) components: transmembrane electric potential (ΔΨ), transmembrane pH gradient (ΔpH), and intracellular ATP levels. The addition of subtilosin to G. vaginalis cells caused an immediate and total depletion of the ΔpH, but had no effect on the ΔΨ. Subtilosin also triggered an instant but partial efflux of intracellular ATP that was twofold higher than that of the positive control bacteriocin, nisin. Taken together, these data suggest that subtilosin inhibits G. vaginalis growth by creating transient pores in the cells' cytoplasmic membrane, leading to an efflux of intracellular ions and ATP and eventually cell death.  相似文献   

2.
Lipid membrane with low proton permeability   总被引:3,自引:0,他引:3  
This work reports the production of a liposomal formulation, having a lipidic membrane with known chemical composition and a low proton permeability, as confirmed by physicochemical characterization of the maintenance of a transmembranic pH gradient. These liposomes consist of DSPC, DSPE-PEG, DSPG and cholesterol, with low internal pH. To verify the low proton permeability of these liposomal bilayers, a study of proton migration according to the fluorescence quenching of 9-aminoacridine (9AA), as well as CPT-11 encapsulation, were used to monitor the acidification of the intravesicular space. Both experiments showed that this liposomal formulation is able to maintain a transmembranic proton gradient.  相似文献   

3.
Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/ product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.  相似文献   

4.
An evolutionary scheme for the origin of chemiosmotic coupling of redox reactions and ATP synthesis is proposed. It is argued that the primitive heterotroph, which generated ATP by substrate level phosphorylation, used some of this ATP in active proton extrusion to regulate cytoplasmic pH. As fermentation substrates were used up, selection favoured organisms which produced a light-dependent redox pump for proton extrusion. This partly replaced the ATP-dependent proton extrusion, thereby economizing on fermentation substrates. The ATP-requiring mechanism was retained for dark proton extrusion. A further economic advantage would come about if the energy of the light-generated proton gradient were used to reverse the ATP-dependent proton pump, leading to chemiosmotic photophosphorylation. This hypothesis explains the origin of the two kinds of proton pump, and their occurrence in the same membrane; the origin of these two prerequisites of chemiosmotic coupling had not previously been adequately explained. The success of the proton pump based on redox loops of alternating vectorial electron and hydrogen atom carriers, rather than the apparently simpler light-driven proton pump of Halobacterium is explained in terms of the ease of converting the former type of cyclic photophosphorylation, but not the latter, into a system bringing about net redox reactions.  相似文献   

5.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

6.
The fluorescent indicator pyranine was used for recording the internal pH of liposomes. The proton permeability was deduced from the velocity of the internal pH increase which was caused by shifting the external pH from 7 to 9. From valinomycin titration of the proton permeability in the presence of internal and external KCl (0.1 M), the permeability coefficient of H+ (PH) was obtained as 10(-4) cm/s at 22 degrees C. The coefficient was twice this value with the ATP synthase isolated from Wolinella succinogenes present in the liposomal membrane (10 mg protein/g phospholipid). ADP and phosphate had no effect on the latter PH. The protonophore TTFB (5 mumol/g phospholipid) increased the PH by 3 orders of magnitude. The permeability coefficients of H+ and K+ were used for calculating the delta uH and the proton flux associated with the phosphorylation which was driven by gradients of H+ and K+. For the conditions of limiting permeability of K+, the following conclusions were drawn. (1) In the steady state of rapid ion flux, the electrical potential across the liposomal membrane as calculated according to the Goldman equation, is directed opposite to the corresponding Nernst potential which is calculated from the K+ gradient. (2) The maximum turnover numbers of phosphorylation require a delta uH of 200-220 mV across the liposomal membrane. These values of delta uH and the corresponding turnover numbers are close to those brought about by the bacterial electron transport and the coupled phosphorylation. (3) The velocity of phosphorylation is linearly related to the proton flux. The slope of the line can be explained on the basis of an H+/ATP ratio of approx. 3.  相似文献   

7.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

8.
Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.  相似文献   

9.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

10.
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

11.
The relationship between proton motive force and the secretion of dextransucrase in Leuconostoc mesenteroides was investigated. L. mesenteroides was able to maintain a constant proton motive force of -130 mV when grown in batch fermentors at pH values 5.8 to 7.0. The contribution of the membrane potential and the transmembrane pH gradient varied depending on the pH of the growth medium. The differential rate of dextransucrase secretion was relatively constant at 1,040 delta mU/delta mg (dry weight) when cells were grown at pH 6.0 to 6.7. Over this pH range, the internal pH was alkaline with respect to the external pH. When cells were grown at alkaline pH values, dextransucrase secretion was severely inhibited. This inhibition was accompanied by an inversion of the pH gradient as the internal pH became more acidic than the external pH. Addition of nigericin to cells at alkaline pH partially dissipated the inverted pH gradient and produced a fourfold stimulation of dextransucrase secretion. Treatment of cells with the lipophilic cation methyltriphenylphosphonium had no effect on the rate of dextransucrase secretion at pH 5.5 but inhibited secretion by 95% at pH 7.0. The reduced rate of secretion correlated with the dissipation of the proton motive force by this compound. Values of proton motive force greater than -90 mV were required for maximal rates of dextransucrase secretion. The results of this study indicate that dextransucrase secretion in L. mesenteroides is dependent on the presence of a proton gradient across the cytoplasmic membrane that is directed into the cell.  相似文献   

12.
The apical membrane of mammalian proximal tubule undergoes rapid membrane cycling by exocytosis and endocytosis. Osmotic water and ATP- driven proton transport were measured in endocytic vesicles from rabbit and rat proximal tubule apical membrane labeled in vivo with the fluid phase marker fluorescein-dextran. Osmotic water permeability (Pf) was determined from the time course of fluorescein-dextran fluorescence after exposure of endosomes to an inward osmotic gradient in a stopped- flow apparatus. Pf was 0.009 (rabbit) and 0.029 cm/s (rat) (23 degrees C) and independent of osmotic gradient size. Pf in rabbit endosomes was inhibited reversibly by HgCl2 (KI = 0.2 mM) and had an activation energy of 6.4 +/- 0.5 kcal/mol (15-35 degrees C). Endosomal proton ATPase activity was measured from the time course of internal pH, measured by fluorescein-dextran fluorescence, after the addition of external ATP. Endosomes contained an ATP-driven proton pump that was sensitive to N-ethylmaleimide and insensitive to vanadate and oligomycin. In response to saturating [ATP] the pump acidified the endosomal compartment at a rate of 0.17 (rat) and 0.029 pH unit/s (rabbit); at an external pH of 7.4, the steady-state pH was 6.4 (rat) and 6.5 (rabbit). To examine whether water channels and the proton ATPase were present in the same endosome, the time course of fluorescein-dextran fluorescence was measured in response to an osmotic gradient in the presence and absence of ATP. ATP did not alter endosome Pf, but decreased the amplitude of the fluorescence signal by 43 +/- 3% (rabbit) and 47 +/- 4% (rat).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Carvacrol, a naturally occurring compound mainly present in the essential oil fraction of oregano and thyme, was studied for its effect on bioenergetic parameters of vegetative cells of the food-borne pathogen Bacillus cereus. Incubation for 30 min in the presence of 1 to 3 mM carvacrol reduced the viable cell numbers exponentially. Carvacrol (2 mM) significantly depleted the intracellular ATP pool to values close to 0 within 7 min. No proportional increase of the extracellular ATP pool was observed. Depletion of the internal ATP pool was associated with a change of the membrane potential (Deltapsi). At concentrations of 0.01 mM carvacrol and above, a significant reduction of Deltapsi was observed, leading to full dissipation of Deltapsi at concentrations of 0.15 mM and higher. Finally, an increase of the permeability of the cytoplasmic membrane for protons and potassium ions was observed (at 0.25 and 1 mM carvacrol, respectively). From this study, it could be concluded that carvacrol interacts with the membranes of B. cereus by changing its permeability for cations like H(+) and K(+). The dissipation of ion gradients leads to impairment of essential processes in the cell and finally to cell death.  相似文献   

14.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

15.
At an external pH of 3.5, nigericin (which catalyses an electroneutral H+/K+ exchange) abolished the transmembrane proton gradient (delta pH) of Bacillus acidocaldarius, causing a rapid acidification of the cytoplasm from approximately pH 6.0 to pH 3.5. A pronounced loss of viability and fine-structural changes rapidly followed treatment with nigericin. A marked decline in respiration and an even more rapid decrease in cytoplasmic ATP were observed. Activity of at least one cytoplasmic enzyme decreased more slowly. There was no generalized loss in the integrity of the cytoplasmic membrane, as assayed by permeability to inulin or Na+ or by release of ultraviolet light-absorbing compounds. The loss of viability upon treatment with carbonyl cyanide m-chlorophenylhydrazone was similar to what observed with nigericin, so proton influx alone, rather than together with K+ efflux, was probably involved in the death of the organism. Moreover, acidification of the cytoplasm rather than abolition of the delta pH was the lethal event, since no loss of viability was observed when the delta pH was abolished by elevation of the external pH.  相似文献   

16.
The electrical and chemical components of the electrochemical proton gradient of submitochondrial particles can be monitored simultaneously by continuously recording optical signals from the probes oxonol-VI and 9-aminoacridine. Either respiration or ATP hydrolysis causes a red shift in the absorption spectrum of oxonol-VI indicative of a membrane potential and a decrease of the fluorescence of 9-aminoacridine indicative of a pH gradient. The magnitude of the membrane potential and pH gradient formed by respiring submitochondrial particles can be modulated by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi] where deltaG'o is the standard free energy of ATP hydrolysis. Increasing values of deltaGp cause an increase in the steady state magnitudes of both the membrane potential and pH gradient. Thermodynamic phosphorylation potential titration experiments indicate that the electrochemical proton gradient normally maintained by respiring submitochondrial particles has an energy equivalent to 10.5 to 10.9 kcal/mol.  相似文献   

17.
Picrophilus oshimae is an extremely acidophilic, thermophilic archaeon that grows optimally at 60°C and at pH 0.7. It is an obligatory acidophile that does not grow at pH values above 4.0. The proton motive force in respiring cells is composed of a large transmembrane pH gradient, inside less acid, and a reversed transmembrane electrical potential, inside positive. Cells maintain an intracellular pH at around 4.6 at extracellular pH values ranging from 0.8 to 4.0. Above pH 4.0 cells lyse rapidly and lose their viability. Liposomes prepared from lipids derived from P. oshimae have an extremely low proton permeability at acidic pH. However, at neutral pH, the lipids are unable to assemble into regular liposomal structures. These observations suggest that the loss of viability and cell integrity above pH 4.0 is due to an impairment of the barrier function of the cytoplasmic membrane. Received: July 18, 1997 / Accepted: November 25, 1997  相似文献   

18.
Acceptance of a membrane potential and/or a proton gradient as a possible means of transmitting energy from oxidations to ATP synthesis rests in part on a satisfactory hypothesis for how the potential or proton gradient could drive ATP synthesis. Recognition that energy input may drive ATP synthesis by change in binding of reactants at the catalytic site has led to the suggestions presented in this paper. These are that in oxidative phosphorylation and photophosphorylation, the requisite conformational changes may be coupled to exposure of charged groups to different sides of the membrane. The cycle of charged group exposure or movement may be driven by the membrane potential or, through protonation and deprotonation, may be coupled to proton translocation across the membrane. Effects of proton gradient and membrane potential may be additive. Similar conformational coupling suggestions may explain proton translocation coupled to ATP cleavage and active transport of metabolites coupled to membrane potential, proton gradients of ATP cleavage.  相似文献   

19.
The very low level of postillumination ATP synthesis in chromatophores was markedly stimulated when permeant anions (thiocyanate or perchlorate) or permeant cations (potassium in the presence of valinomycin) were added to the light stage. Although these compounds stimulated also light-induced proton uptake in chromatophores the pH dependence of both photoreactions was different. Proton uptake peaked at pH 6.5 while the amount of postillumination ATP was maximal when the light stage was carried out around pH 7.7. The increased yield of ATP at the more alkaline pH could not be explained by a slower decay of the high energy state at this pH, since the decay rate was faster at pH 7.7 than at pH 6.5. The proton concentration gradient which is maintained across the chromatophore membrane in the light was also found to increase when the external pH was raised from 6.0 to 8.0. Only a minimal amount of postillumination ATP was formed when this gradient was below 2.1 pH units, but above this value the ATP yield rose steeply as a function of the increasing pH gradient. In light of these results it is suggested that in order to obtain a high yield of postillumination ATP synthesis in chromatophores two conditions are required: the particles have to be loaded with a sufficient number of protons and a light-induced pH gradient above a certain threshold value has to be maintained across their membrane. The low yield of postillumination ATP in chromatophores and the increase obtained by adding permeating ions, is thus explained by similar variations in the extent of the pH gradient, which exceeded the threshold value only in the presence of the permeating ions.  相似文献   

20.
CO2 reduction to acetate in anaerobic bacteria   总被引:1,自引:0,他引:1  
Abstract The reduction of 2 CO2 to acetate is catalyzed in the energy metabolism of homoacetogenic bacteria, which couple acetate formation to the synthesis of ATP. The carboxyl group of acetate is formed from CO2 via reduction to a bound carbonyl ([CO]), a redution that requires the input of methaolic energy when hydrogen is used as the electron donor. The methyl group of acetate is formed via formate and tetrahydrofolate bound C1 intermediates including methyl tetrahydrofolate as the intermediates. The methyl group is the 'condensed' with the carbonyl and CoA to acetyl-CoA, which is converted to acetate in the energy metabolism or to cell carbon in the anabolism of the bacteria. The mechanism of ATP synthesis coupled to CO2 reduction to acetate is still unclear. The only reaction sufficiently exergonic is the reduction of methylene tetrahydrofolate to methyl tetrahydrofolate. Indirect evidence was presented that this reaction in homoacetogens might be coupled to the electrogenic transport of sodium across the cytoplasmic membrane. The sodium gradient formed via methylene-THF reduction could be transformed into a proton gradient via a sodium/proton antiporter. ATP would then be synthesized by a proton translocating ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号