首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide probes complementary to alpha-tubulin, preprotachykinin A (PPT A), preprosomatostatin (PPSOM), and preproarginine-vasopressin (PPAVP) mRNA were hybridized to sections of rat and rabbit brain and dorsal root ganglia (DRG) at all spinal levels. Approximately 100% of the DRG neurons in the rat and rabbit express alpha-tubulin mRNA, 20-30% express PPT A mRNA and 5-17% express PPSOM mRNA. Whereas neurons which express PPSOM mRNA are of relative uniform size, the neurons which express PPT A mRNA segregate into two broad groups. One group is composed of smaller neurons (200-2,000 microns 2) which contain an extremely dense concentration of PPT A mRNA. The second group is composed of larger neurons (2,000-3,500 microns 2) which contain a moderate concentration of PPT A mRNA. PPAVP mRNA is present in very high concentrations in the paraventricular and supraoptic nucleus of the rat hypothalamus but is not detected in any DRG neurons. In both the rat and the rabbit the density of PPT A and PPSOM mRNA is high in individual DRG neurons in comparison to PPT A and PPSOM mRNA levels contained in most forebrain neurons. These results suggest that although the level of neuropeptide present in DRG neurons is relatively low in comparison to other brain areas, the rate of sensory neuropeptide synthesis and turnover, as reflected by mRNA content, is extremely high.  相似文献   

2.
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cγ (PKCγ+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCγ+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.  相似文献   

3.
4.
The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 μm2 in cross-sectional area and 20 to 30 μm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state.  相似文献   

5.
Dorsal root ganglion (DRG) neurons express mRNAs for numerous two-pore domain K+ (K2P) channels and G-protein coupled receptors (GPCR). Recent studies have shown that TRESK is a major background K+ channel in DRG neurons. Here, we demonstrate the pharmacological properties of TRESK, including GPCR agonist-induced effects on DRG neurons. TRESK mRNA was highly expressed in DRG compared to brain and spinal cord. Similar to cloned TRESK, native TRESK was inhibited by acid and arachidonic acid (AA), but not zinc. Native TRESK was also activated by GPCR agonists such as acetylcholine, glutamate, and histamine. The glutamate-activated TRESK was blocked by lamotrigine in DRG neurons. In COS-7 cells transfected with mouse TRESK, 30 μM lamotrigine inhibited TRESK by ∼50%. Since TRESK is target of modulation by acid, AA, GPCR agonists, and lamotrigine, it is likely to play an active role in the regulation of excitability in DRG neurons.  相似文献   

6.
To examine regulatory effects of β-catenin on the biosynthesis and release of substance P, a rat chronic constriction injury (CCI) model and a rat dorsal root ganglion (DRG) cell culture model were used in the present study. The CCI treatment significantly induced the overall expression of β-catenin (158 ± 6% of sham) in the ipsilateral L5 DRGs in comparison with the sham group (109 ± 4% of sham). The CCI-induced aberrant expression of β-catenin was significantly attenuated by oral administration of diclofenac (119 ± 6% of the sham value; 10 mg/kg). Importantly, aberrant nuclear accumulation of β-catenin in cultured DRG cells resulted in up-regulation of the PPT-A mRNA expression and the substance P release. The up-regulation of both the PPT-A mRNA expression and the substance P release by either a GSK-3β inhibitor TWS119 (10 μM) or a Wnt signaling agonist Wnt-3a (100 ng/ml) were significantly abolished by an inhibitor of cyclooxygenase-2 (COX-2; NS-398, 1 μM). Collectively, these data suggest that nociceptive input-activated β-catenin signaling plays an important role in regulating the biosynthesis and release of substance P, which may contribute to the inflammation responses related to chronic pain.  相似文献   

7.
We have analyzed the morphology of growth cones of differentiating neurons from rat dorsal root ganglia (DRG) with conventional Laser Scanning Confocal Microscopy (LSCM) and Atomic Force Microscopy (AFM). Images of immunofluorescent DRG growth cones colabeled for actin and tubulin were superimposed to images obtained with AFM at different scanning forces. In order to reduce changes of the image surface caused by the pressure of the AFM tip, we have developed a procedure to obtain 0 pN AFM images. Further analysis of these images revealed topographical structures with nanoscale dimensions, referred to as “invaginations” or “holes”. These holes had an area varying from 0.01 to 3.5 μm2 with a depth varying from 2 to 178 nm. Comparative analysis with LSCM images showed that these holes correspond to regions where staining of both actin and tubulin was negligible. Filopodia height varied from 40 to 270 nm and their diameter from 113 to 887 nm. These results show that the combination of LSCM and AFM reveal structural details with a nanoscale dimension of DRG growth cones, difficult to resolve with conventional microscopy.  相似文献   

8.
9.
RNA blot analysis and non-isotopic in situ hybridization cytochemistry were used to study the expression of the mRNA for the glial sodium channel NaG, belonging to Na+ channel subfamily 2, in rat dorsal root ganglia (DRG). mRNA hybridizing at high stringency with an antisense riboprobe against the NaG sequence was observed in both Schwann cells and spinal sensory neurons in situ within DRG, but was expressed at higher levels in the latter. In contrast, hybridization was not detectable in neurons within hippocampus, cerebellum and spinal cord. The expression of the mRNA hybridizing with the NaG probe appears to be developmentally regulated in both Schwann cells and DRG neurons, with levels increasing as development proceeds. Thus, in addition to the mRNAs for types I and II/IIA α-subunits and β1-subunit in DRG neurons and types II/IIA and III α-subunits and β1-subunit in Schwann cells, the mRNA for an additional sodium channel belonging to subfamily 2 is expressed in these cells in situ. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

10.
Low voltage–activated (LVA) T-type Ca2+ (ICaT) and NaN/Nav1.9 currents regulate DRG neurons by setting the threshold for the action potential. Although alterations in these channels have been implicated in a variety of pathological pain states, their roles in processing sensory information remain poorly understood. Here, we carried out a detailed characterization of LVA currents in DRG neurons by using a method for better separation of NaN/Nav1.9 and ICaT currents. NaN/Nav1.9 was inhibited by inorganic ICa blockers as follows (IC50, μM): La3+ (46) > Cd2+ (233) > Ni2+ (892) and by mibefradil, a non-dihydropyridine ICaT antagonist. Amiloride, however, a preferential Cav3.2 channel blocker, had no effects on NaN/Nav1.9 current. Using these discriminative tools, we showed that NaN/Nav1.9, Cav3.2, and amiloride- and Ni2+-resistant ICaT (AR-ICaT) contribute differentially to LVA currents in distinct sensory cell populations. NaN/Nav1.9 carried LVA currents into type-I (CI) and type-II (CII) small nociceptors and medium-Aδ–like nociceptive cells but not in low-threshold mechanoreceptors, including putative Down-hair (D-hair) and Aα/β cells. Cav3.2 predominated in CII-nociceptors and in putative D-hair cells. AR-ICaT was restricted to CII-nociceptors, putative D-hair cells, and Aα/β-like cells. These cell types distinguished by their current-signature displayed different types of mechanosensitive channels. CI- and CII-nociceptors displayed amiloride-sensitive high-threshold mechanical currents with slow or no adaptation, respectively. Putative D-hair and Aα/β-like cells had low-threshold mechanical currents, which were distinguished by their adapting kinetics and sensitivity to amiloride. Thus, subspecialized DRG cells express specific combinations of LVA and mechanosensitive channels, which are likely to play a key role in shaping responses of DRG neurons transmitting different sensory modalities.  相似文献   

11.
The presence and distribution of P2Y (nucleotide) receptor subtypes in rat sensory neurons has been investigated. RT-PCR showed that P2Y1, P2Y2, P2Y4 and P2Y6 receptor mRNA is expressed in sensory ganglia [dorsal root ganglion (DRG), nodose ganglion (NG) and trigeminal ganglion (TG)]. The regional and cellular distribution of P2Y1 and P2Y4 receptor proteins in these ganglia was investigated using immunohistochemistry. P2Y1 polyclonal antibodies stained over 80% of the sensory neurons, particularly the small-diameter (neurofilament-negative) neurons. The P2Y4 receptor antibody stained more medium- and large- (neurofilament-positive) diameter neurons than small-diameter neurons. P2Y1 and P2Y4 receptor immunoreactivity (P2Y1-IR and P2Y4-IR) was often coexpressed with P2X3 receptor immunoreactivity (P2X3-IR) in subpopulations of neurons. Double immunohistochemistry showed that 73–84% of P2X3 receptor-positive neurons also stained for the P2Y1 receptor in DRG, TG and NG while only 25–35% also stained for the P2Y4 receptor. Subpopulations of P2Y1-IR neurons were coexpressed with NF200, CGRP and IB4; most P2Y4-IR neurons were coexpressed with NF200, while only a few neurons were coexpressed with CGRP (10–20%) or with IB4 (1–2%). The results suggest that P2Y as well as P2X receptor subtypes contribute to purinergic signalling in sensory ganglia.  相似文献   

12.
Both neurotrophins (NTs) and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT), calcitonin-gene related peptide (CGRP), neurofilament 200 (NF-200), and microtubule associated protein 2 (MAP-2) in dorsal root ganglion (DRG) sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF) or neurotrophin-3 (NT-3) on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.  相似文献   

13.
Endogenous opioid peptides derived from several gene families are localized within hypothalamic regions known to be involved in the regulation of reproduction. For example, the proenkephalin gene products, met- and leu-enkephalin, and the proopiomelanocortin (POMC) gene product, β-endorphin, are found in the rat medial preoptic area (MPOA). Moreover, the expression of these peptides and their receptors varies across the estrous cycle in the female rat. We have examined the gonadal steroid regulation of μ-opiate receptors and opioid peptides in the MPOA, and POMC mRNA expression in neurons that innervate the MPOA. μ-Opiate receptors in the MPOA are sexually dimorphic and gonadal steroid hormone-dependent. Hormonal priming of ovariectomized rats with estrogen and progesterone (P) upregulates MPOA μ-receptors 27, but not 3, hr after P treatment. Inhibition of protein synthesis during the first 6 hr after P prevents receptor upregulation, The density of β-endorphin fibers in the MPOA also increases following hormone treatment, and POMC mRNA expression in neurons that innervate the MPOA is induced by hormone treatment beginning 13 hr after P treatment. This delayed response might be ubiquitous among POMC neurons, as those innervating the median eminence also exhibit increased POMC mRNA expression along a similar time course. The results suggest that hormonal feedback regulates opioid peptides which act at μ-receptors in the MPOA to influence reproductive behavior and cyclicity. These opioid functions represent an important component in the complex regulatory processes which control reproduction.  相似文献   

14.
Previous studies have established that most of the mRNAs that neurons express are localized in the cell body and very proximal dendrites, whereas a small subset of mRNAs is present at relatively high levels in dendrites. It is not clear, however, whether particular mRNAs have the same subcellular distribution in different types of neurons or whether different types of neurons sort mRNAs in different ways. The present study was undertaken to address these questions. Nonisotopic in situ hybridization techniques were used to define the subcellular localization of representative mRNAs including β-tubulin, low-molecular-weight neurofilament protein (NF-68), high-molecular-weight microtubule-associated protein (MAP2), growth-associated protein 43 (F1/GAP43), the alpha subunit of calcium/calmodulin-dependent protein kinase II (αCaMII kinase), and poly(A+) mRNA. The mRNAs for β-tubulin, neurofilament 68, and F1/GAP43 were restricted to the region of the cell body and very proximal dendrites in most neurons. In some neuron types, however, labeling for NF-68 extended for considerable distances into dendrites. In some neurons that express MAP2, the mRNA was present at the highest levels in the proximal third to half of the dendritic arbor, whereas in other neurons the highest levels of labeling were in the cell body. In most neurons that express αCaMII kinase, the highest levels of the mRNA were in the cell body, but labeling was also present throughout dendrites. However, in a few types of neurons, αCaMII kinase mRNA was largely restricted to the cell body. The fact that there are no general rules for mRNA localization that apply to all neuron types implies the existence of neuron type-specific mechanisms that regulate mRNA distribution. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 473–493, 1997  相似文献   

15.
Infusion of norephinephrine (NE) (1 – 3 μg/ml/min) into the isolated mesenteric vascular preparation of rabbit resulted in a rise in perfusion pressure, which was associated with the release of a prostaglandin E-like substance (PGE) at a concentration of 2.81 ± 0.65 ng/ml in terms of PGE2. Indomethacin (3 μg/ml) abolished the NE-induced release of PGE. Arachidonic acid (0.2 μg/ml) in the presence of indomethacin did not restore the NE-induced release of PGE. Hydrocortisone (10 – 30 μg/ml) and dexamethasone (2 – 5 μg/ml) also inhibited the NE-induced release of PGE. The inhibitory action of both corticosteroids was abolished by arachidonic acid (0.2 μg/ml). Antigen-induced release of a prostaglandin-like substance (PGs) (43.1 ± 3.8 ng/ml in terms of PGE2 and a rabbit aorta contracting substance (RCS) from perfused lungs of sensitized guinea pigs was completely abolished by indomethacin (5 μg/ml) or by hydrocortisone (100 μg/ml). Indomethacin, however, increased histamine release up to 280% of the control level, which was 470 ± 54 ng/ml, while hydrocortisone diminished histamine release down to 30% of the control level. A superimposed infusion of arachidonic acid (1 μg/ml) into the pulmonary artery reversed the hydrocortisone-induced blockade of the release of RCS and PGs. It may be concluded that corticosteroids neither inhibit prostaglandin synthetase nor influence prostaglandin transport through the membranes but they do impair the availability of the substrate for the enzyme.  相似文献   

16.
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.  相似文献   

17.
A series of substituted aryl amide derivatives of 6-naltrexamine, 3 designed to be metabolically stable were synthesized and used to characterize the structural requirements for their potency to binding and functional activity of human mu (μ), delta (δ) and kappa (κ) opioid and nociceptin (NOP) receptors. Binding assays showed that 410 had subnanomolar Ki values for μ and κ opioid receptors. Functional assays for stimulation of [35S]GTPγS binding showed that several compounds acted as partial or inverse agonists and antagonists of the μ and δ, κ opioid or NOP receptors. The compounds showed considerable stability in the presence of rat, mouse or human liver preparations and NADPH. The inhibitory activity on the functional activity of human cytochrome P450s was examined to determine any potential inhibition by 49. Only modest inhibition of CYP3A4, CYP2C9 and CYP2C19 was observed for a few of the analogs. As a representative example, radiolabeled 6 was examined in vivo and showed reasonable brain penetration. The inhibition of ethanol self-administration in rats trained to self-administer a 10% (w/v) ethanol solution, utilizing operant techniques showed 58 to have very potent efficacy (ED50 values 19–50 μg/kg).  相似文献   

18.
The effects of 1×10–8–1×10–5 M dopamine (DA) and serotonin (HT) on membrane potential, input resistance (RM), and action potential (AP) when added to the superfusing fluid for 0.5 min were investigated in perfused dorsal root ganglia (DRG) neurons isolated from 30–36-day old rats during experiments using intracellular recording techniques. Application of DA induced reversible changes in membrane potential in 48 out of 52 test cells as compared with 38 out of 44 for HT. Distribution of different patterns of response to DA and HT was similar: depolarization was recorded in 64.6 and 73.7% and hyperpolarization in 16.7 and 15.8%; two-stage response occurred in 18.7 and 10.5% of responding cells, respectively. Both monoamines induced reversible change in the AP and RM pattern in a number of cells. Depolarization was accompanied by a decline and hyperpolarization by a rise in RM. Both substances were found to affect mainly those neurons with electrophysiological properties characteristic of small cells. The possibility of afferent spike train modulation at the level of primary sensory neurons is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian USSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 644–651, September–October, 1989.  相似文献   

19.
Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal μ-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the μ-receptor protein expression in the dorsal root ganglia (DRG), directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the μ-receptor antibody staining specificity. We found that the antibody specifically labeled μ-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of μ/δ/κ-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of μ-receptor expression in the DRG was not possible. However, we demonstrate that the μ-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, μ-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies'' specificity, preferably using knockout animals.  相似文献   

20.
Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG). Previous studies discovered that a chronic compression of the DRG (CCD) induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers) to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN) was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD). After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA), while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN). We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号