首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary In Bacillus subtilis a dehydrogenase activity for branched chain amino acids was induced twelvefold in glucose medium by isoleucine. To a lesser degree this activity was induced by metabolically related amino acids with the exception of leucine which hardly induced. The induced enzyme actvity is different from alanine dehydrogenase. The presumable role of this inducible enzyme in anteiso fatty acid biosynthesis is discussed.  相似文献   

4.
Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species.  相似文献   

5.
The N-acetylmuramic acid L-alanine amidase from Bacillus subtilis W-23 has been purified to apparent homogeneity. The enzyme is a monomer of molecular weight 51,000, which binds extremely tightly to homologous cell walls but not to heterologous cell walls, even of the closely related strain B. subtilis ATCC 6051. This difference in binding is only in part due to differences in teichoic acid between these two strains and to a large extent appears to represent differences in the arrangement of the peptidoglycan. A comparison of the amidase from B. subtilis W-23 and the enzyme previously purified from B. subtilis ATCC 6051 (Herbold and Glaser, 1975) shows that the two proteins, which cleave the same bond and are of the same size, do not cross-react immunologically and that the two enzymes are, therefore, not closely related in structure.  相似文献   

6.
7.
The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression.  相似文献   

8.
9.
A Bacillus subtilis malate dehydrogenase gene.   总被引:1,自引:1,他引:1       下载免费PDF全文
A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation.  相似文献   

10.
Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD+ or NADP+ as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP+ was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.  相似文献   

11.
The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K(+). Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The K(i) values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction.  相似文献   

12.
Homoserine dehydrogenase in dialyzed cell extracts of Bacillus subtilis 168 was studied, particularly with regard to inhibition, repression, and level of activity as a function of stage of development (growth and sporulation). It was assayed in the "forward direction" using L-aspartic semialdehyde and NADPH as substrates. Of the potentials inhibitors tested, only cysteine and NADP were found to be effective. Both L- and D-cysteine were equally effective. Therefore, the physiological significance of cysteine as an inhibitor is somewhat questionable. Amino acids involved in repression of homoserine dehydrogenase included methionine, isoleucine, possibly threonine, and one or more unidentified components of Casamino acids. The specific activity of homoserine dehydrogenase was highest during the exponential phase of growth and declined steadily during the stationary phase of growth. The low specific activity during late sporulation may favor preferential funnelling of L-aspartic semialdehyde into the lysine pathway, where it is needed for synthesis of large amounts of dipicolinic acid and diaminopimelic acid.  相似文献   

13.
Bacillus subtilis strain 168 possesses an NAD-dependent glutamate dehydrogenase. The level of this enzyme is influenced by the stage of growth, the source of nitrogen, and a high rate of tryptophan biosynthesis. The enzyme appears to serve an anabolic function and, therefore, must be considered as a possible route for the incorporation of inorganic nitrogen into an organic form.  相似文献   

14.
15.
16.
Phenolic acids and iron transport in Bacillus subtilis   总被引:8,自引:0,他引:8  
  相似文献   

17.
Spores of the standard transformable Marburg strain of Bacillus subtilis can be initiated to germinate by l-alanine alone. We isolated mutants which required for this process, in addition to l-alanine, the combination of d-glucose + d-fructose + K(+) or NH(4) (+) ions. In place of fructose, autoclaved or caramelized glucose could be used. Even the standard type strain required the addition of these three agents when d-alanine was present or when the temperature was raised. These findings show that l-alanine normally performs two functions during initiation, one of which is absent in the mutants or is blocked by d-alanine or elevated temperature. One of our mutants was not absolutely dependent on the addition of external l-alanine, because it could be initiated at a reduced rate by the sole addition of glucose + K(+) or NH(4) (+). When K(+) or NH(4) (+) was replaced by Na(+), the initiation rate was greatly reduced. The divalent metal ions Mg(++), Mn(++), and Ca(++) could not satisfy the cation requirement.  相似文献   

18.
Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis.  相似文献   

19.
20.
Abstract A mutant of Bacillus subtilis has been isolated which is devoid of glucose dehydrogenase. This mutant is unable to germinate on a mix of glucose, fructose, asparagine, and KCl, which is a normal germination trigger for wild-type strains. Transfer of the genotype by transformation to isogenic strains confers the same properties on these transformed strains. These observations strongly implicate glucose dehydrogenase in germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号