首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, the immobilization of superoxide dismutase (SOD) onto aminopropyl-functionalized KIT-6 [n-PrNH(2)-KIT-6] was investigated. This organo-functionalized mesoporous silica nanoparticle was prepared using a non-ionic surfactant and was fully characterized by XRD, nitrogen adsorption-desorption isotherm assay, IR and TGA techniques. An activity assay demonstrated that the immobilized SOD had a higher activity than the free enzyme. Further investigations using FT-IR, circular dichroism (CD), and probe 1-anilino-8-naphthalene sulfonate (ANS) fluorescence intensity measurements indicated that the structure of the enzyme did not change upon binding to the mesoporous silica, and that immobilized SOD was also less affected by higher temperatures. The melting temperatures of the free and immobilized enzymes were measured by differential scanning calorimetry (DSC), which showed that a fraction of immobilized enzyme was more stable and revealed that immobilized enzyme was partly reversible.  相似文献   

2.
T Toraya  K Oashi  S Fukui 《Biochemistry》1975,14(19):4255-4260
Coenzyme B12 dependent diol dehydrase from Aerobacter aerogenes was immobilized by covalent binding to CNBr-activated Sepharose 4B. The Sepharose-bound enzyme exhibited a markedly high catalytic activity, viz., 75-95% of the specific activity of the original free enzyme. The apoenzyme acquired much greater stability to heat by immobilization. No significant difference between the immobilized and free enzymes was observed in the following properties: the affinity for coenzyme B12; the sensitivity to a sulfhydryl-modifying agent; the absolute requirement for a certain monovalent cation, such as K+, for catalysis; the susceptibility toward oxygen upon incubation with coenzyme B12 in the absence of substrate. These results suggest that the structure and function of the enzyme are not significantly influenced by immobilization on Sepharose. The immobilized enzyme was found to provide a convenient method for a study of ligand interaction with the enzyme. The subunit interaction between two dissimilar subunits, components F and S, was investigated using the component S immobilized on CNBr-activited Sepharose and free component F, and it was demonstrated that the substrate (1,2-propanedoil) promotes the hybrid formation between component F and component S, but K+ alone rather retarded the subunit association to some extent. Na+ markedly weakens the forces which bind the subunits together. The relationship between cobalamin binding and subunit structure is also discussed.  相似文献   

3.
A novel method for the preparation of highly active immobilized enzymes is described. It is based on the binding of enzymes to suitable carriers via monoclonal antibodies, which bind to the enzyme with high affinity without affecting its catalytic activity. The applicability of the method forwarded has been illustrated by the preparation of two samples of highly active immobilized carboxypeptidase A (CPA) preparations as follows: A mouse monoclonal antibody (mAb 100)to CPA that binds to the enzyme with a high-affinity constant without affecting its catalytic activity was prepared, purified, and characterized. Covalent binding of this monoclonal antibody to Eupergit C (EC) or noncovalent binding to Sepharose-protein A (SPA)yielded the conjugated carriers EC-mAb and SPA.mAb, respectively, which reacted specifically with CPA to give the immobilized enzyme preparations EC-mAb.CPA and SPA.mAb.CPA displaying full catalytic activity and improved stability. At pH 7.5 and a temperature range of 4-37 degrees C an apparent binding constant of approximately 10(8)M(-1) characterizing the interaction of CPA with EC-mAb and SPA.mAb, was obtained. To compare the properties of EC-mAb.CPA and SPA.mAb.CPA with those of immobilized CPA preparations obtained by some representative techniques of covalent binding of the enzyme with a corresponding carrier, the following immobilized CPA preparations were obtained and their properties investigated: EC-CPA (I), a preparation obtained by direct binding of EC with CPA; EC-NH-GA-CPA (II), a derivative obtained by covalent binding of CPA to aminated EC via glutaraldehyde; EC-NH-Su-CPA (III), a CPA derivative obtained by binding the enzyme to aminated EC via a succinyl residue; and EC-HMD-GA-CPA (IV), obtained by binding the enzyme via glutaraldehyde to a hexamethylene diamine derivative of EC. Full enzymic activity for all of the bound enzyme, such as that recorded for the immobilized CPA preparations EC-mAb.CPA and SPA.mAb.CPA, was not detected in any of the insoluble covalently bound enzyme preparations.  相似文献   

4.
The interaction between human cytomegalovirus (HCMV) protease and a peptide substrate was studied using a surface plasmon resonance (SPR)-based biosensor. Immobilization of the enzyme to the sensor chip surface by amine coupling resulted in an active enzyme with a higher catalytic efficiency than the enzyme in solution, primarily due to a lower K(m) value. The interaction between immobilized protease and substrate was characterized by a biphasic SPR signal. Rate constants for the formation of the initial enzyme-substrate complex could be determined from the sensorgrams. Simulated binding curves based on the determined k(cat) and the rate constants indicated that the complex binding signal did not originate from the accumulation of intermediates in the catalytic reaction. By chemical crosslinking of the immobilized HCMV protease, which was shown to limit the enzyme's structural flexibility, it was revealed that the obtained sensorgrams were composed of a signal caused by substrate binding and considerable structural alterations in the immobilized enzyme. Furthermore, HCMV protease was inactivated by chemical crosslinking, indicating that structural flexibility is essential for this enzyme. Parallel experiments with immobilized alpha-chymotrypsin revealed that it does not undergo similar conformational changes on peptide binding and that crosslinking did not inactivate the enzyme. The simultaneous detection of binding and conformational changes using optical biosensor technology is expected to be of importance for further characterization of the enzymatic properties of HCMV protease and for identification of inhibitors of this enzyme. It can also be of use for studies of other flexible proteins.  相似文献   

5.
The enzyme urease (urea amidohydrolase, EC 3.5.1.5) prepared from Cajanus indicus, has been immobilized with glutaraldehyde-treated chitin as the solid support. The immobilized enzyme was characterized by determining the pH profiles and optimum temperature. Effect of glutaraldehyde concentration on the binding of enzyme to chitin was studied. The storage stability of the chitin-urease system was determined.  相似文献   

6.
Yücel Y 《Bioresource technology》2011,102(4):3977-3980
In the present work, microbial lipase from Thermomyces lanuginosus was immobilized by covalent binding onto olive pomace. Immobilized support material used to produce biodiesel with pomace oil and methanol. The properties of the support and immobilized derivative were evaluated by scanning electron microscopy (SEM). The maximum immobilization of T. lanuginosus was obtained as 18.67 mg/g support and the highest specific activity was 10.31 U/mg protein. The properties of immobilized lipase were studied. The effects of protein concentration, pH and buffer concentration on the immobilization and lipase activity were investigated. Biodiesel production using the immobilized lipase was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 93% at 25 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

7.
Action pattern of endopolygalacturonase (E.C.3.2.1.15) immobilized by adsorption on porous powdered poly(ethyleneterephthalate) and covalently bound via amino groups on poly(2, 6-dimethyl-p-phenyleneoxide) and poly(6-caprolactame), respectively, were investigated in suspension and packed columns using polymeric and oligomeric D-galactosiduronates as substrates. The covalent binding invariably led to a lowering of randomness of degradation of high-molecular substrates and loss of specificity of (3 + 1) splitting of tetra(galactosiduronic acid), typical of the free enzyme. In the adsorbed endopolygalacturonase the degree of randomness of degradation of D-galacturonan and K(m,app) value were dependent on the substrate transfer; the former parameter increased, the later decreased with increasing flow-rate of the substrate through the immobilized enzyme bed. The action pattern on low-molecular substrates was not altered. The changes in action pattern of the covalently immobilized endopolygalacturonase are ascribed to sterical limitations resulting from a binding of the enzyme molecule in the proximity of its active site. In endopolygalacturonase bound to the support by hydrophobic interactions external diffusion effects are regarded the factors governing the enzyme action.  相似文献   

8.
Glucoamylase from Aspergillus awamori 466 was immobilized on various supports. The enzyme sorption depends on its amount, the type of support, and immobilization conditions. The kinetics of acidic inactivation of the native and immobilized enzyme was studied. The immobilized enzyme was more resistant to temperature and pH. The mechanism of the enzyme binding to the support was investigated by IR spectroscopy.  相似文献   

9.
DNA binding activity of rabbit antiserum against calf spleen DNA's modified by thiophosphamide (DNA-T) was studied by means of solid enzyme immunoassays (ELISA). The studies demonstrated the preferential binding of the immobilized DNA-T compared to immobilized single-stranded DNA (ss-DNA) and only small preference compared to native DNA. Two antisera against DNA-T were purified by affinity chromatography on a ss-DNA-CNBr agarose from antibodies to calf spleen ss-DNA. They interacted only with the immobilized DNA-T, but not with ss-DNA or native DNA. These results demonstrated that DNA modification by thiophosphamide, decreases the immunogenicity of usual nitrogen-containing DNA bases, but detected new immunogenic specificity for adducts. Detection of new immunogenic specificity in DNA's alkylated by thiophosphamide, resulted in the development of a sensitive enzyme immunoassay for the detection of these adducts in nucleic acids, in monitoring their formation, persistence and repair damages in DNA.  相似文献   

10.
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.  相似文献   

11.
Glucoamylase from Aspergillus awamori466 was immobilized on various supports. The enzyme sorption depends on its amount, the type of support, and immobilization conditions. The kinetics of acidic inactivation of the native and immobilized enzyme was studied. The immobilized enzyme was more resistant to temperature and pH. The mechanism of the enzyme binding to the support was investigated by IR spectroscopy.  相似文献   

12.
Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.  相似文献   

13.
The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.  相似文献   

14.
The production of galacto-oligosaccharides (GOS) from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth was studied. A novel method of enzyme immobilization involving PEI-enzyme aggregate formation and growth of aggregates on individual fibrils of cotton cloth leading to multilayer immobilization of the enzyme was developed. A large amount of enzyme was immobilized (250 mg/g support) with about 90-95% efficiency. A maximum GOS production of 25-26% (w/w) was achieved at near 50% lactose conversion from 400 g/L of lactose at pH 4.5 and 40 degrees C. Tri- and tetrasaccharides were the major types of GOS formed, accounting for about 70% and 25% of the total GOS produced in the reactions, respectively. Temperature and pH affected not only the reaction rate but also GOS yield to some extend. A reaction pH of 6.0 increased GOS yield by as much as 10% compared with that of pH 4.5 while decreased the reaction rate of immobilized enzyme. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme under the same reaction conditions, suggesting diffusion limitation was negligible in the packed bed reactor and the enzyme carrier. Increase in the thermal stability of PEI-immobilized enzyme was also observed. The half-life for the immobilized enzyme on cotton cloth was close to 1 year at 40 degrees C and 21 days at 50 degrees C. Stable, continuous operation in a plug-flow reactor was demonstrated for about 3 days without any apparent problem. A maximum GOS production of 26% (w/w) of total sugars was attained at 50% lactose conversion with a feed containing 400 g/L of lactose at pH 4.5 and 40 degrees C. The corresponding reactor productivity was 6 kg/L/h, which is several-hundred-fold higher than those previously reported.  相似文献   

15.
Glucoamylase was immobilized on granular polyacrylonitrile (PAN) and the optimum condition in its immobilization reaction was determined. The effect of the ratio of the imidoester and methylester to the total cyanogen on the activity of the immobilized enzyme was studied. The activity of the immobilized enzyme increased in proportion to the molar number of imidoester and decreased with that of methylester. The K(m) and V(m) values of immobilized glucoamylase which were prepared at various conditions of immobilization were determined. There were opposite trends in K(m)S between glucoamylase immobilized on imidoester-rich support and immobilized on methylester in the support, evidenced as functions of temperature. This suggests that opposite charges in the support, produced by heat deformation of PAN by hydrolysis of methylester, were an influence on the apparent K(m) of immobilized glucoamylase, besides the diffusional limitation.  相似文献   

16.
For the first time, the enzyme rhodanese had been refolded after thermal denaturation. This was previously not possible because of the strong tendency for the soluble enzyme to aggregate at temperatures above 37 degrees C. The present work used rhodanese that was covalently coupled to a solid support under conditions that were found to preserve enzyme activity. Rhodanese was immobilized using an N-hydroxymalonimidyl derivative of Sepharose containing a 6-carbon spacer. The number of immobilized competent active sites was measured by using [35S]SO3(2-) to form an active site persulfide that is the obligatory catalytic intermediate. Soluble enzyme was irreversibly inactivated in 10 min at 52 degrees C. The immobilized enzyme regained at least 30% of its original activity even after boiling for 20 min. The immobilized enzyme had a Km and Vmax that were each approximately 3 times higher than the corresponding values for the native enzyme. After preincubation at high temperatures, progress curves for the immobilized enzyme showed induction periods of up to 5 min before attaining apparently linear steady states. The pH dependence of the activity was the same for both the soluble and the immobilized enzyme. These results indicate significant stabilization of rhodanese after immobilization, and instabilities caused by adventitious solution components are not the sole reasons for irreversibility of thermal denaturation seen with the soluble enzyme. The results are consistent with models for rhodanese that invoke protein association as a major cause of inactivation of the enzyme. Furthermore, the induction period in the progress curves is consistent with studies which show that rhodanese refolding proceeds through intermediate states.  相似文献   

17.
Glucose oxidase (GOD), horseradish peroxidase (HRP), and lactate oxidase (LOD) were covalently immobilized on special NH(2)-functionalized glass and on a novel NH(2)-cellulose film via 13 different coupling reagents. The properties of these immobilized enzymes, such as activity, storage stability, and thermostability, are strongly dependent on the coupling reagent. For example, GOD immobilized by cyanuric chloride on the NH(2)-cellulose film loses approximately half of its immobilized activity after 30 days of storage at 4 degrees C or after treatment at 65 degrees C for 30 min. In contrast, GOD immobilized by L-ascorbic acid onto the same NH(2)-cellulose film retains 90% of its initial activity after 1 year of storage at 4 degrees C and 92% after heat treatment at 65 degrees C for 30 min. Unlike GOD, in the case of LOD only immobilization on special NH(2)-functionalized glass, e.g., via cyanuric chloride, led to a stabilization of the enzyme activity in comparison to the native enzyme. The operational stability of immobilized HRP was up to 40 times higher than that of the native enzyme if coupling to the new NH(2)-cellulose film led to an amide or sulfonamide bond. Regarding the kinetics of the immobilized enzymes, the coupling reagent plays a minor role for the enzyme substrate affinity, which is characterized by the apparent Michaelis constant (K(M,app)). The NH(2)-functionalized support material as well as the immobilized density of the protein and/or immobilized activity has a strong influence on the K(M,app) value. In all cases, K(M,app) decreases with increasing immobilized enzyme protein density and particularly drastically for GOD.  相似文献   

18.
 以自制的脱乙酰壳多糖作载体,戊二醛为交联剂,对胰蛋白酶的固定化条件及其固定化酶的性质进行了研究。考查了交联剂的用量、pH值、以及载体与酶的比例等因素对胰蛋白酶固定化的影响。在所选择的固定化条件下,固定化酶的活性回收可达50%以上。同时研究了固定化胰蛋白酶的一些性质;最适温度60℃,最适PH8.0,Km值比可溶性酶升高,热稳定性、pH贮存稳定性以及在乙醇水溶液中的稳定性明显高于可溶性胰蛋白酶。在柱式反应器内,以2%酪蛋白为底物对,操作半衰期为40天。  相似文献   

19.
Bovine liver catalase was immobilized on different supports. The tetrameric nature of this enzyme was found to cause its rapid inactivation in diluted conditions due to subunit dissociation, a fact that may rule out its industrial use. Multi-subunit immobilization using highly activated glyoxyl agarose was not enough to involve all enzyme subunits. In fact, washing the derivative produced a strong decrease in the enzyme activity. Further cross-linking of previously immobilized enzyme with tailor-made dextran-aldehyde permitted the multimeric structure to be fully stabilized using either multisubunit preparations immobilized onto highly activated glyoxyl-agarose support or one subunit enzymes immobilized onto poorly activated glyoxyl-agarose. The highest stability of the final biocatalyst was observed using the multisubunit immobilized derivative cross-linked with dextran-aldehyde. The optimal derivative retained around 60% of the immobilized activity, did not release any enzyme subunits after boiling in the presence of SDS, and did not lose activity during washing, and its stability did not depend on the dilution. This derivative was used for 10 cycles in the destruction of 10 mM hydrogen peroxide without any decrease in the enzyme activity.  相似文献   

20.
Chloroperoxidase (CPO) was covalently immobilized on poly(hydroxypropyl methacrylate-co-polyethyleneglycole-methacrylate) membranes, which were characterized, by swelling test, FT-IR spectroscopy, scanning electron microscopy, and contact angle measurement. The Km and Vmax values for free and immobilized CPO were found to be 34.6 and 47.2 μM, and 287.5 and 245.2 U/mg protein, respectively. The optimum pH for both the free and immobilized enzyme was observed at 3.0. The immobilized enzyme showed wide pH and temperature profiles. Most importantly, the increased thermal, storage and operational stability of immobilized CPO should depend on the creation of a comfortable strong hydrophilic microenvironment on the designed support to the host enzyme molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号