首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viability measurements in mammalian cell systems   总被引:7,自引:0,他引:7  
  相似文献   

2.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

3.
The fluorescence properties of 1-alkyl(and aryl)thio-2-alkylisoindoles, formed by the reaction of o-phthalaldehyde (OPTA) and thiols with primary amines, are reported. Variations in thiol and amine substituents and solvent polarity have large effects on the isoindole fluorescence spectra. These parameters, in addition to 3-thiol substitution of the isoindoles, pH, and the use of phosphate vs borate aqueous buffers, were found to have dramatic effects on the corrected relative fluorescence intensity. Low concentrations and nonaqueous solvents apparently stabilized most adducts while aqueous solutions, especially at low pH, caused pseudo-first-order decomposition, probably via hydrolysis to the corresponding 2,3-dihydro-1H-isoindole-1-one. However, 3.3 × 10−8 solutions of the more intensely fluorescent adducts (total adduct 5 pmol) were readily detected if the fluorescence was determined shortly after adding the isoindole to pH 9.2 borate buffer. The adduct formed using ethanethiol and n-propylamine possessed spectral properties which were the most responsive to changes in solvent polarity and was the most stable under the various conditions employed. Finally, arguments are presented that these isoindoles are the products in several other fluorogenic assays using OPTA.  相似文献   

4.
Addition of hydroxypropyl-beta-cyclodextrin to o-phthalaldehyde (OPA)-amino acid-thiol reaction mixtures is shown to cause significant enhancement of the fluorescence of the isoindole product for a wide range of amino acids, with the largest effects observed in the cases of glycine and lysine. The largest enhancement observed was a factor of 2.67 in the case of the derivative of glycine. This fluorescence enhancement is the result of the formation of a 1:1 host:guest inclusion complex between the isoindole and the cyclodextrin. Relatively small association constants of 44 and 130 M(-1) were obtained for the inclusion of the derivatives of glycine and lysine, respectively. Inclusion of the isoindole derivative into hydroxypropyl-beta-cyclodextrin was also found to result in a significant stabilization of the isoindole derivatives, contrary to what has been previously reported for inclusion into beta-cyclodextrin. For example, the lifetime of the lysine derivative was found to increase from 42 to 222 min, a factor of 5.3. These results have potential applications in fluorescence-based HPLC and high-performance capillary electrophoresis amino acid analysis methods using OPA derivation. Addition of hydroxypropyl-beta-cyclodextrin to the reaction mixture results in an increase in both the fluorescence and the stability of the isoindole product, providing potentially significant improvements to the method.  相似文献   

5.
Histamine reacts with ortho-phthalaldehyde (OPA) in an alkaline medium to form an unstable fluorescent adduct (Fbase-Hm). Acidification of the solution to pH 2-4 gives a stable and highly fluorescent adduct (Facid-Hm). In contrast, histidine develops a relatively stable fluorescent adduct (Fbase-Hd) with OPA in an alkaline medium. Upon acidification of the solution, however, only trace amounts of the alternative fluorescent adduct (Facid-Hd) are produced although Fbase-Hd disappears similarly to Fbase-Hm. In this paper, the reaction pathway of histidine with OPA was clarified by the kinetic analysis of formation and degradation of Fbase-Hd. In comparing the results of this study with the previous ones for histamine (T. Yoshimura et al., 1987, Anal. Biochem., 164, 132-137), we elucidate the difference between histamine and histidine in the mechanism of fluorescence reaction with OPA. The presence of the carboxyl group in histidine not only stabilizes Fbase-Hd in an alkaline medium but also prevents the formation of a 1:2 adduct of histidine and OPA, the precursor of Facid-Hd.  相似文献   

6.
Anish R  Rao M 《Biochimie》2007,89(12):1489-1497
A bifunctional high molecular weight (Mr, 64,500 Da) beta-1-3, 1-4 glucan 4-glucanohydrolase was purified to homogeneity from Thermomonospora sp., exhibiting activity towards lichenan and xylan. A kinetic method was used to analyze the active site that hydrolyzes lichenan and xylan. The experimental data was in agreement with the theoretical values calculated for a single active site. Probing the conformation and microenvironment at active site of the enzyme by fluorescent chemo-affinity label, OPTA resulted in the formation of an isoindole derivative with complete inactivation of the enzyme to hydrolyse both lichenan and xylan confirmed the results of kinetic method. OPTA forms an isoindole derivative by cross-linking the proximal thiol and amino groups. The modification of cysteine and lysine residues by DTNB and TNBS respectively abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating the participation of cysteine and lysine in the formation of isoindole complex.  相似文献   

7.
The stability of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) was investigated using a combination of high-performance liquid chromatography, solid-phase extraction, photodiode array spectrophotometric detection, and mass spectrometric (MS) characterization. The degradation of amino acid derivatives, generated using beta-mercaptoethanol as a nucleophile, was characterized under a variety of environmental influences, with a focus on understanding the degradation kinetics and identifying the degradation products. The predominant degradation product observed under most reaction conditions was the nonfluorescent lactam form of the originally fluorescent isoindole derivative. First, the time-dependent degradation of the isoindole derivative L-serine-NDA-beta-mercaptoethanol was found to follow pseudo-first order kinetics with a half-life of 2.0 min at pH 9.2 and room temperature. The isoindole derivative was observed to react further with methanol to form a more stable fluorescent methoxy-isoindole, shedding new light on the basis for enhanced stability of these derivatives in methanol. Tandem mass spectrometry (MS/MS) experiments were used to demonstrate unimolecular degradation of the protonated isoindole in the absence of solvent or atmosphere, suggesting an intramolecular reaction mechanism involving the hydroxyethylthio group. Finally, in photobleaching studies, NDA derivatives rapidly degraded into a variety of products within the first 2 min of photobleaching versus timed controls, with the predominant product being the lactam. These results suggest that the degradation pathway for NDA derivatives is similar to the previously reported pathway for o-phthalaldehyde derivatives and clearly identifies the reaction and degradation products under a variety of conditions.  相似文献   

8.
A cross-linked modification of Lys residue located at the subsite of the enzyme active site of Taka-amylase A was attained by the use of the fluorescent reagent of o-phthalaldehyde (OPA). The fluorescence and uv absorption at 337 nm derived from the isoindole ring, which was produced by cross-linking through the epsilon-amino group of Lys and the thiol group of the Cys residue, provided the evidence for the OPA-mediated inactivation of Taka-amylase A. Kinetic analysis showed that 1 mol of OPA per mole of enzyme was incorporated, which corresponded closely with the value obtained by the uv absorption. Because the OPA inactivation was retarded by the substrate analog of alpha-cyclodextrin, OPA modification was classified as a type of affinity labeling reaction. A remarkable increase in the pI value from 4.0 to 5.6 upon the modification led to clear separation of the modified enzyme from the native Taka-amylase A by a DEAE-Sephacel column and led to the charge isomer pattern on gel electrophoresis performed according to the method of Hedrick and Smith. Moreover, the affinity gel electrophoresis showed that the modified enzyme completely lost the affinity for the substrate soluble starch, which indicated that the subsite modification occurred.  相似文献   

9.
An analytical method is described for the quantification of S-nitrosoglutathione (GSNO), a potent physiological vasodilator and inhibitor of platelet aggregation, in the presence of a high excess of reduced glutathione (GSH). The method is based on the quantitative elimination of GSH by N-ethylmaleimide, the conversion of GSNO by 2-mercaptoethanol to GSH, its reaction with o-phthalaldehyde (OPA) to form a highly fluorescent and UV-absorbing tricyclic isoindole derivative, and subsequent high-performance liquid chromatographic (HPLC) separation with fluorescence and/or UV absorbance detection. The OPA derivatives of GSH and GSNO obtained by this method were found to be identical by mass spectrometry. GSH (up to 50 microM) did not interfere with the analysis of GSNO (up to 1000 nM). The limits of detection of the method for buffered aqueous solutions of GSNO were determined as 3 nM using fluorescence and 70 nM using UV absorbance detection. Isolation of GSNO by HPLC analysis (pH 7.0) of plasma ultrafiltrate samples (200 microl) prior to derivatization allows specific and artifact-free quantification of GSNO in human and rat plasma. Reduced and oxidized glutathione, nitrite, and cysteine did not interfere with the measurement of GSNO in human and rat plasma. The limit of quantitation (LOQ) of the combined method was determined as 100 nM of GSNO in human plasma ultrafiltrate using fluorescence detection. No endogenous GSNO could be detected in ultrafiltrate samples of plasma of 10 healthy humans at concentrations exceeding the LOQ of the method. After iv infusion of GSNO (125 micromol/kg body wt) in a rat for 20 min GSNO and GSH were detected in rat plasma at 60 and 130 microM, respectively. The method should be useful to investigate formation, metabolism, and reactions of GSNO in vitro and in vivo at physiologically relevant concentrations.  相似文献   

10.
Modification of phosphoenolpyruvate carboxylase with o-phthalaldehyde (OPA) resulted in rapid and irreversible inactivation exhibiting biphasic reaction kinetics. The kinetic analysis and correlation of spectral changes with activity indicated that inactivation by OPA results from the modification of two lysine and two cysteine residues per subunit of the enzyme. PEP plus Mg2+ offered substantial protection against modification. Some of the effectors also gave appreciable protection against modification indicating that the residues may be located at or close to the active site. Thus, the results indicate formation of two isoindoles showing the proximity of the essential lysine and cysteine residues at the active site.  相似文献   

11.
o-Phthalaldehyde (OPA) is a bifunctional reagent that forms an isoindole derivative by reacting with cysteine and lysine residues separated by approximately 0.3 nm. OPA inhibits sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity at low micromolar concentrations and induces Ca(2+) release from actively loaded SR vesicles by activating the ryanodine receptor from fast twitch skeletal muscle. Both ryanodine binding and single-channel activity show a biphasic concentration dependence. At low OPA concentrations (<100 microM), ryanodine binding and single channel activity are stimulated, while at higher concentrations, a time-dependent sequential activation and inhibition of receptor binding is observed. Activation is characterized by a Ca(2+)-independent increase in maximal receptor occupancy. Data are presented to support a model in which Ca(2+) channel and ryanodine binding activity are enhanced due to an intramolecular cross-linking of nearby lysine and nonhyperreactive cysteine residues. OPA complexation with endogenous lysine residue(s) is critical for receptor activation.  相似文献   

12.
A novel fluorescent phospholipid, whose structure was tentatively assigned as 1-(2′-thio-1′-hydroxyethyl)-2-(ethylphosphatidyl)isoindole), was synthesized by reacting O-phthalaldehyde and β-mercaptoethanol with phosphatidylethanolamine. The fluorescent lipid product was purified by silicic acid chromatography. The purity was demonstrated by thin-layer chromatography. This fluorescent phospholipid could not form stable lipid vesicles. However, a mixture of phosphatidylcholine and this fluorescent phospholipid did form stable vesicles after sonication, as demonstrated by Sepharose 4B column chromatography and electron microscopy. The absorption and fluorescence properties of this lipid, both as aqueous micelles or incorporated into vesicles, have been determined. The potential usage of this new fluorescent phospholipid in membrane studies is discussed.  相似文献   

13.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

14.
Rhodanese is oxidatively inactivated by several reagents, some of which are not normally considered oxidants. Rhodanese, in a form not containing persulfide sulfur (E), was inactivated by phenylglyoxal under conditions where disulfides are formed. There was the concomitant increase in the fluorescence of the apolar probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bisANS). At 0.2 mg/ml protein, there was no turbidity, while at 1 mg/ml, turbidity formed after an induction period of 23 min. Phenylglyoxal-inactivated E was extensively digested by endoproteinase glutamate C (V8 protease) to give two discrete high molecular weight fragments (Mr = 29,500 and 16,000). Enzymatically active E or ES, the form of rhodanese containing transferred sulfur (Mr = 33,000) was totally refractory to V8 protease and gave only small fluorescent enhancement of bisANS. Phenylglyoxal inactivated ES (reaction at arginine) gave very little fluorescence enhancement of bisANS and was not digested by V8. Hydrogen peroxide rapidly inactivated E (t1/2 less than 2 min) giving a slow increase in bisANS fluorescence (t1/2 greater than 10 min) identical to that observed with phenylglyoxal. The turbidity also increased after an induction period of approximately 30 min. Inactivation of E by hydrogen peroxide gave the same digestion pattern as that observed with phenylglyoxal inactivation. The turbidity was associated with the formation of disulfide-bonded structures that formed with the stoichiometry of E, 2E, 4E, 6E, 8E, etc. relative to the native enzyme, E. E was inactivated with several other reagents that lead to oxidatively inactivated rhodanese including NADH, dithiothreitol, mercaptoethanol, and m-dinitrobenzene. Enzyme inactivated with dithiothreitol or NADH gave an identical digestion pattern as above. In addition, with the exception of NADH which could not be used due to optical interference, each of the reagents gave rise to increased fluorescence of bisANS after inactivation. The results are consistent with a model in which the oxidized rhodanese resulting from diverse treatments is in a new conformation that has extensive exposed apolar surfaces and can form both noncovalent and disulfide-bonded aggregates.  相似文献   

15.
Yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), a homodimer, was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics over a wide range of the inhibitor concentration. The second-order-rate constant for the inactivation of hexokinase was estimated to be 45 M-1.s-1. Hexokinase was protected more by sugar substrates than by nucleoside triphosphates during inactivation by o-phthalaldehyde. Absorption spectrum (lambda max 338 nm), and fluorescence excitation (lambda max 363 nm) and emission (lambda max 403 nm) spectra of the hexokinase-o-phthalaldehyde adduct were consistent with the formation of an isoindole derivative. These results also suggest that sulfhydryl and epsilon-amino functions of the cysteine and lysine residues, respectively, participating in the isoindole formation are about 3 A apart in the native enzyme. About 2 mol of the isoindole per mol of hexokinase dimer were formed following complete loss of the phosphotransferase activity. Chemical modification of hexokinase by iodoacetamide in the presence of mannose resulted in the modification of six sulfhydryl groups per mol of hexokinase with retention of the phosphotransferase activity. Subsequent reaction of the iodoacetamide modified hexokinase with o-phthalaldehyde resulted in complete loss of the phosphotransferase activity with concomitant modification of the remaining two sulfhydryl groups of hexokinase. Chemical modification of hexokinase by iodoacetamide in the absence of mannose resulted in complete inactivation of the enzyme. The iodoacetamide inactivated hexokinase failed to react with o-phthalaldehyde as evidenced by the absence of a fluorescence emission maximum characteristic of the isoindole derivative. The holoenzyme failed to react with [5'-(p-fluorosulfonyl)benzoyl]adenosine. The dissociated hexokinase could be inactivated by [5'-(p-fluorosulfonyl)benzoyl]adenosine; the degree of inactivation paralleled the extent of reaction between o-phthalaldehyde and the nucleotide-analog modified enzyme. Thus, it is concluded that two cysteines and lysines at or near the active site of the hexokinase were involved in reaction with o-phthalaldehyde following complete loss of the phosphotransferase activity. An important finding of this investigation is that the lysines, involved in isoindole formation, located at or near the active site are probably buried.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

17.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

18.
Enterobacter aerogenes glycerol dehydrogenase (GlDH EC 1.1.1.6), a tetrameric NAD + specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5′-phosphate (PLP) and o -phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced GlDH indicated the specific modification of ? -amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD + and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of GlDH by the bifunctional reagent OPA, which reacts specifically with proximal ? -NH 2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD + was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of GlDH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

19.
The effectiveness of different concentrations of ortho-phthalaldehyde (OPA) in controlling biofilms of Pseudomonas fluorescens formed on stainless steel slides, using flow cell reactors under laminar and turbulent flow, was investigated by determining the variation in mass and respiratory activity. The physical stability of the biofilm with and without exposure to OPA was studied in a rotating device as variation in the mass of the biofilm on the surface after exposure to different rotation velocities. The activity of OPA against bacterial suspended cultures was evaluated in the presence and absence of bovine serum albumin (BSA) in order to evaluate the interference of proteins on the activity of the biocide. The results showed that biofilms formed under different flow conditions had different properties and reacted differently after biocide application. Biofilms formed under laminar flow were more easily inactivated than those formed under turbulent conditions. However, OPA did not promote the detachment of biofilms from the surface. The exposure of biofilms to different shear stress conditions after OPA treatment enhanced removal from the surface, indicating that OPA may weaken the biofilm matrix. The biocide was more effective on suspended cells than on cells grown in biofilms. This fact may be explained by the reaction of the biocide with proteins of the polymeric matrix of the biofilm as suggested by the significant reduction of biocide action on suspended cells in the presence of BSA.  相似文献   

20.
The effectiveness of different concentrations of ortho-phthalaldehyde (OPA) in controlling biofilms of Pseudomonas fluorescens formed on stainless steel slides, using flow cell reactors under laminar and turbulent flow, was investigated by determining the variation in mass and respiratory activity. The physical stability of the biofilm with and without exposure to OPA was studied in a rotating device as variation in the mass of the biofilm on the surface after exposure to different rotation velocities. The activity of OPA against bacterial suspended cultures was evaluated in the presence and absence of bovine serum albumin (BSA) in order to evaluate the interference of proteins on the activity of the biocide. The results showed that biofilms formed under different flow conditions had different properties and reacted differently after biocide application. Biofilms formed under laminar flow were more easily inactivated than those formed under turbulent conditions. However, OPA did not promote the detachment of biofilms from the surface. The exposure of biofilms to different shear stress conditions after OPA treatment enhanced removal from the surface, indicating that OPA may weaken the biofilm matrix. The biocide was more effective on suspended cells than on cells grown in biofilms. This fact may be explained by the reaction of the biocide with proteins of the polymeric matrix of the biofilm as suggested by the significant reduction of biocide action on suspended cells in the presence of BSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号