首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Articular injuries in athletic horses are associated with large forces from ground impact and from muscular contraction. To accurately and noninvasively predict muscle and joint contact forces, a detailed model of musculoskeletal geometry and muscle architecture is required. Moreover, muscle architectural data can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb. Muscle architectural data were collected from seven limbs obtained from five thoroughbred and thoroughbred-cross horses. Muscle belly rest length, tendon rest length, muscle volume, muscle fiber length, and pennation angle were measured for nine distal forelimb muscles. Physiological cross-sectional area (PCSA) was determined from muscle volume and muscle fiber length. The superficial and deep digital flexor muscles displayed markedly different muscle volumes (227 and 656 cm3, respectively), but their PCSAs were very similar due to a significant difference in muscle fiber length (i.e., the superficial digital flexor muscle had very short fibers, while those of the deep digital flexor muscle were relatively long). The ulnaris lateralis and flexor carpi ulnaris muscles had short fibers (17.4 and 18.3 mm, respectively). These actuators were strong (peak isometric force, Fmax=5,814 and 4,017 N, respectively) and stiff (tendon rest length to muscle fiber length, LT:LMF=5.3 and 2.1, respectively), and are probably well adapted to stabilizing the carpus during the stance phase of gait. In contrast, the flexor carpi radialis muscle displayed long fibers (89.7 mm), low peak isometric force (Fmax=555 N), and high stiffness (LT:LMF=1.6). Due to its long fibers and low Fmax, flexor carpi radialis appears to be better adapted to flexion and extension of the limb during the swing phase of gait than to stabilization of the carpus during stance. Including muscle architectural parameters in a musculoskeletal model of the equine distal forelimb may lead to more realistic estimates not only of the magnitudes of muscle forces, but also of the distribution of forces among the muscles crossing any given joint.  相似文献   

2.
The objective of this work was to develop a method to simulate single-limb ground contact events, which may be applied to study musculoskeletal injuries associated with such movements. To achieve this objective, a three-dimensional musculoskeletal model was developed consisting of the equations of motion for the musculoskeletal system, and models for the muscle force generation and ground contact elements. An optimization framework and a weighted least-squares objective function were presented that generated muscle stimulation patterns that optimally reproduced subject-specific movement data. Experimental data were collected from a single subject to provide initial conditions for the simulation and tracking data for the optimization. As an example application, a simulation of the stance phase of running was generated. The results showed that the average difference between the simulation and subject's ground reaction force and joint angle data was less than two inter-trial standard deviations. Further, there was good agreement between the model's muscle excitation patterns and experimentally collected electromyography data. These results give confidence in the model to examine musculoskeletal loading during a variety of landing movements and to study the effects of various factors associated with injury. Limitations were examined and areas of improvement for the model were presented.  相似文献   

3.
Footfall patterns and time sequence of activity are described for white rats conditioned to run freely in an activity wheel (which they drive). Motion is described in terms of soft contact, hard contact, soft contact, and flip phases. Duration of stride decreases and length of stride increases from walk to trot to canter to gallop. Myographic analysis shows that the brachialis has a major tonic function after it fires strongly during the flip phase and during much of the hard contact phase. Animals running at canter or gallop show major asymmetries between forelimb muscles on the first paw and on the lead paw sides.  相似文献   

4.
Pattern of anterior cruciate ligament force in normal walking   总被引:6,自引:0,他引:6  
The goal of this study was to calculate and explain the pattern of anterior cruciate ligament (ACL) loading during normal level walking. Knee-ligament forces were obtained by a two-step procedure. First, a three-dimensional (3D) model of the whole body was used together with dynamic optimization theory to calculate body-segmental motions, ground reaction forces, and leg-muscle forces for one cycle of gait. Joint angles, ground reaction forces, and muscle forces obtained from the gait simulation were then input into a musculoskeletal model of the lower limb that incorporated a 3D model of the knee. The relative positions of the femur, tibia, and patella and the forces induced in the knee ligaments were found by solving a static equilibrium problem at each instant during the simulated gait cycle. The model simulation predicted that the ACL bears load throughout stance. Peak force in the ACL (303 N) occurred at the beginning of single-leg stance (i.e., contralateral toe off). The pattern of ACL force was explained by the shear forces acting at the knee. The balance of muscle forces, ground reaction forces, and joint contact forces applied to the leg determined the magnitude and direction of the total shear force acting at the knee. The ACL was loaded whenever the total shear force pointed anteriorly. In early stance, the anterior shear force from the patellar tendon dominated the total shear force applied to the leg, and so maximum force was transmitted to the ACL at this time. ACL force was small in late stance because the anterior shear forces supplied by the patellar tendon, gastrocnemius, and tibiofemoral contact were nearly balanced by the posterior component of the ground reaction.  相似文献   

5.
As equine musculoskeletal models become common, it is important to determine their sensitivity to the simplifications used. A subject-specific distal forelimb model was created using bones extracted from CT scans to examine movement from in-vivo invasive-marker motion capture. The movements of the sesamoid bones were simulated using the constraints of maintaining an isometric virtual ligament and maintaining contact between the appropriate articular surfaces, creating a variable moment arm for the tendons. The simulation of the proximal sesamoid bones was compared to movement recorded in-vitro. The paths and origins used for the deep digital flexor tendon (DDFT), superficial digital flexor tendon (SDFT) and suspensory ligament (SL) were altered and the effects on their calculated strains during trot stance were examined. The most influential alteration tested was the dorsopalmar changes to the tendon paths at the level of the proximal sesamoid bones, which led to a maximum length reduction of 4 and 2 mm for the SDFT and DDFT, respectively. Alterations to the virtual origins of the SDFT and DDFT were not influential leading to up to a 0.01% effect on strains for a 1cm dorsopalmar shift. In the SL, the choice of the proximal or distal edge of the proximal attachment site varied the strains calculated by up to 1% (3 mm). These results show that within the anatomically realistic spectrum, changes to tendon paths can have an appreciable effect on calculated strains; however the origin sites chosen are not as influential as changes to paths at the metacarpo-phalangeal joint.  相似文献   

6.
The purpose of this study was to predict and explain the pattern of shear force and ligament loading in the ACL-deficient knee during walking, and to compare these results to similar calculations for the healthy knee. Musculoskeletal modeling and computer simulation were combined to calculate ligament forces in the ACL-deficient knee during walking. Joint angles, ground-reaction forces, and the corresponding lower-extremity muscle forces obtained from a whole-body dynamic optimization simulation of walking were input into a second three-dimensional model of the lower extremity that represented the knee as a six degree-of-freedom spatial joint. Anterior tibial translation (ATT) increased throughout the stance phase of gait when the model ACL was removed. The medial collateral ligament (MCL) was the primary restraint to ATT in the ACL-deficient knee. Peak force in the MCL was three times greater in the ACL-deficient knee than in the ACL-intact knee; however, peak force sustained by the MCL in the ACL-deficient knee was limited by the magnitude of the total anterior shear force applied to the tibia. A decrease in anterior tibial shear force was brought about by a decrease in the patellar tendon angle resulting from the increase in ATT. These results suggest that while the MCL acts as the primary restraint to ATT in the ACL-deficient knee, changes in patellar tendon angle reduce total anterior shear force at the knee.  相似文献   

7.
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.  相似文献   

8.
Mathematical models of small animals that predict in vivo forces acting on the lower extremities are critical for studies of musculoskeletal biomechanics and diseases. Rabbits are advantageous in this regard because they remodel their cortical bone similar to humans. Here, we enhance a recent mathematical model of the rabbit knee joint to include the loading behavior of individual muscles, ligaments, and joint contact at the knee and ankle during the stance phase of hopping. Geometric data from the hindlimbs of three adult New Zealand white rabbits, combined with previously reported intersegmental forces and moments, were used as inputs to the model. Muscle, ligament, and joint contact forces were computed using optimization techniques assuming that muscle endurance is maximized and ligament strain energy resists tibial shear force along an inclined plateau. Peak forces developed by the quadriceps and gastrocnemius muscle groups and by compressive knee contact were within the range of theoretical and in vivo predictions. Although a minimal force was carried by the anterior cruciate and medial collateral ligaments, force patterns in the posterior cruciate ligament were consistent with in vivo tibial displacement patterns during hopping in rabbits. Overall, our predictions compare favorably with theoretical estimates and in vivo measurements in rabbits, and enhance previous models by providing individual muscle, ligament, and joint contact information to predict in vivo forces acting on the lower extremities in rabbits.  相似文献   

9.
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity.  相似文献   

10.
Because musculoskeletal injuries to racehorses are common, instrumentation for the study of factors (e.g. track surface), which affect the ground reaction loads in horses during racing conditions, would be useful. The objectives of the work reported by this paper were to (1) design and construct a novel dynamometric horseshoe that is capable of measuring the complete ground reaction loading during racing conditions, (2) characterize static and dynamic measurement errors, and (3) demonstrate the usefulness of the instrument by collecting example data during the walk, trot, canter, and gallop for a single subject. Using electrical resistance strain gages, a dynamometric horseshoe was designed and constructed to measure the complete ground reaction force and moment vectors and the center of pressure. To mimic the load transfer surface of the hoof, the shape of the surface contacting the ground was similar to that of the solar surface of the hoof. Following static calibration, the measurement accuracy was determined. The root mean squared errors (RMSE) were 3% of full scale for the force component normal to the hoof and 9% for force components in the plane of the hoof. The dynamic calibration determined that the natural frequency with the full weight of a typical horse was 1744 Hz. Example data were collected during walking on a ground surface and during trotting, cantering, and galloping on a treadmill. The instrument successfully measured the complete ground reaction load during all four gaits. Consequently the dynamometric horseshoe is useful for studying factors, which affect ground reaction loads during racing conditions.  相似文献   

11.
Hip loading affects bone remodeling and implant fixation. In this study, we have analyzed the effect of subject-specific modeling of hip geometry on muscle activation patterns and hip contact forces during gait, using musculoskeletal modeling, inverse dynamic analysis and static optimization. We first used sensitivity analysis to analyze the effect of isolated changes in femoral neck-length (NL) and neck-shaft angle (NSA) on calculated muscle activations and hip contact force during the stance phase of gait. A deformable generic musculoskeletal model was adjusted incrementally to adopt a physiological range of NL and NSA. In a second similar analysis, we adjusted hip geometry to the measurements from digitized radiographs of 20 subjects with primary hip osteoarthrosis. Finally, we studied the effect of hip abductor weakness on muscle activation patterns and hip contact force. This analysis showed that differences in NL (41-74 mm) and NSA (113-140 degrees ) affect the muscle activation of the hip abductors during stance phase and hence hip contact force by up to three times body weight. In conclusion, the results from both the sensitivity and subject-specific analysis showed that at the moment of peak contact force, altered NSA has only a minor effect on the loading configuration of the hip. Increased NL, however, results in an increase of the three hip contact-force components and a reduced vertical loading. The results of these analyses are essential to understand modified hip joint loading, and for planning hip surgery for patients with osteoarthrosis.  相似文献   

12.
Bone contact forces on the distal tibia during the stance phase of running   总被引:1,自引:0,他引:1  
Although the tibia is a common site of stress fractures in runners, the loading of the tibia during running is not well understood. An integrated experimental and modeling approach was therefore used to estimate the bone contact forces acting on the distal end of the tibia during the stance phase of running, and the contributions of external and internal sources to these forces. Motion capture and force plate data were recorded for 10 male runners as they ran at 3.5-4 m/s. From these data, the joint reaction force (JRF), muscle forces, and bone contact force on the tibia were computed at the ankle using inverse dynamics and optimization methods. The distal end of the tibia was compressed and sheared posteriorly throughout most of stance, with respective peak forces of 9.00+/-1.13 and 0.57+/-0.18 body weights occurring during mid stance. Internal muscle forces were the primary source of tibial compression, whereas the JRF was the primary source of tibial shear due to the forward inclination of the leg relative to the external ground reaction force. The muscle forces and JRF both acted to compress the tibia, but induced tibial shear forces in opposing directions during stance, magnifying tibial compression and reducing tibial shear. The superposition of the peak compressive and posterior shear forces at mid stance may contribute to stress fractures in the posterior face of the tibia. The implications are that changes in running technique could potentially reduce stress fracture risk.  相似文献   

13.
The study aimed to test the hypothesis that the restraining role of the anterior cruciate ligament (ACL) of the knee is significant during the activities of normal walking and stair ascent. The role of the ACL was determined from the effect of ACL excision on tibiofemoral displacement patterns measured in vitro for fresh-frozen knee specimens subjected to simulated knee kinetics of walking (n = 12) and stair ascent (n = 7). The knee kinetics were simulated using a newly developed dynamic simulator able to replicate the sagittal-plane knee kinetics with reasonable accuracy while ensuring unconstrained tibiofemoral kinematics. The displacements were measured using a calibrated six degree-of-freedom electromechanical goniometer. For the simulation of the walking cycle, two types of knee flexion/extension moment patterns were used: the more common "biphasic" pattern, and an extensor muscle force intensive pattern. For both of these patterns, the restraining role of the ACL to tibial anterior translation was found to be significant throughout the stance phase and in the terminal swing phase, when the knee angle was in the range of 4 degrees to 30 degrees. The effect of ACL excision was an increase in tibial anterior translation by 4 mm to 5 mm. For the stair ascent cycle, however, the restraining role of the ACL was significant only during the terminal stance phase, and not during the initial and middle segments of the phase. Although, in these segments, the knee moments were comparable to that in walking, the knee angle was in the range of 60 degrees to 70 degrees. These results have been shown to be consistent with available data on knee mechanics and ACL function measured under static loading conditions.  相似文献   

14.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

15.
Anterior cruciate ligament (ACL) injury commonly occurs during single limb landing or stopping from a run, yet the conditions that influence ACL strain are not well understood. The purpose of this study was to develop, test and apply a 3D specimen-specific dynamic simulation model of the knee designed to evaluate the influence of deceleration forces during running to a stop (single-leg landing) on ACL strain. This work tested the conceptual development of the model by simulating a physical experiment that provided direct measurements of ACL strain during vertical impact loading (peak value 1294N) with the leg near full extension. The properties of the soft tissue structures were estimated by simulating previous experiments described in the literature. A key element of the model was obtaining precise anatomy from segmented MR images of the soft tissue structures and articular geometry for the tibiofemoral and patellofemoral joints of the knee used in the cadaver experiment. The model predictions were correlated (Pearson correlation coefficient 0.889) to the temporal and amplitude characteristic of the experimental strains. The simulation model was then used to test the balance between ACL strain produced by quadriceps contraction and the reductions in ACL strain associated with the posterior braking force. When posterior forces that replicated in vivo conditions were applied, the peak ACL strain was reduced. These results suggest that the typical deceleration force that occurs during running to a single limb landing can substantially reduce the strain in the ACL relative to conditions associated with an isolated single limb landing from a vertical jump.  相似文献   

16.
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.  相似文献   

17.
The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.  相似文献   

18.
Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient's gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like cost functions produced realistic gait, with stance phase knee flexion, as opposed to energy-related cost functions which avoided knee flexion during the stance phase. We conclude that fatigue minimization may be one of the primary optimality principles governing human gait.  相似文献   

19.

Background

Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included.

Methods

The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons.

Results

Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula.

Conclusions

The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.
  相似文献   

20.
Biomechanics of the knee during stair-ascent has mostly been studied using skin-marker-based motion analysis techniques, but no study has reported a complete assessment of the soft tissue artifacts (STA) and their effects on the calculated joint center translation, angles and moments at the knee in normal subjects during this activity. This study aimed to bridge the gap. Twelve young adults walked up a three-step stair while data were acquired simultaneously from a three-dimensional motion capture system, a force plate and a dynamic fluoroscopy system. The "gold standards" of poses of the knee were obtained using a 3D fluoroscopy method. The STA of the markers on the thigh and shank were then calculated, together with their effects on the calculated joint center translations, angles and moments at the knee. The STA of the thigh markers were greater than those on the shank, leading to significantly underestimated flexion and extensor moments, but overestimated joint center translations during the first half of the stance phase. The results will be useful for a better understanding of the normal biomechanics of the knee during stair-ascent, as a baseline for future clinical applications and for developing a compensation method to correct for the effects of STA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号