首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) in wheat (Triticum aestivum L. cv. Yangmai 158) leaves during dark-induced senescence was studied. An in vivo degradation product of Rubisco large subunit (LSU) with molecular weight of 50 kD was detected by SDS-PAGE and immunoblotting with antibody against tobacco Rubisco. This fragment could also be detected in natural senescence. The result also suggested that the Rubisco holoenzyme had not dissociated when LSU hydrolyzed from 53 kD to 50 kD. And LSU could be fragmented to 50 kD at 30-35 ℃ and at pH 7.5 in crude enzyme extracts of wheat leaves dark-induced for 48 h, which suggested that maybe LSU was degraded to 50 kD by an unknown protease in chloroplast.  相似文献   

2.
Lysates of chloroplasts isolated from wheat (Triticum aestivumL. cv. Aoba) leaves were incubated on ice (pH 5.7) for 0 to60 min in light (15 µmol quanta m–2 s–1),and degradation of the large subunit (LSU) of ribulose-l,5-bis-phosphatecarboxylase/oxygenase (Rubisco: EC 4.1.1.39 [EC] ) was analyzed byapplying immunoblotting with site-specific antibodies againstthe N-terminal, internal, and C-terminal amino acid sequencesof the LSU of wheat Rubisco. The most dominant product of thebreakdown of the LSU and that which was first to appear wasan apparent molecular mass of 37-kDa fragment containing theN-terminal region of the LSU. A 16-kDa fragment containing theC-terminal region of the LSU was concomitantly seen. This fragmentationof the LSU was inhibited in the presence of EDTA or 1,10-phenanthroline.The addition of active oxygen scavengers, catalase (for H2O2)and n-propyl gallate (for hydroxyl radical) to the lysates alsoinhibited the fragmentation. When the purified Rubisco fromwheat leaves was exposed to a hydroxyl radical-generating systemcomprising H2O2, FeSO4 and ascorbic acid, the LSU was degradedin the same manner as observed in the chloroplast lysates. Theresults suggest that the large subunit of Rubisco was directlydegraded to the 37-kDa fragment containing the N-terminal regionand the 16-kDa fragment containing the C-terminal region ofthe LSU by active oxygen, probably the hydroxyl radical, generatedin the lysates of chloroplasts. (Received October 28, 1996; Accepted February 7, 1997)  相似文献   

3.
The degradation of the large subunit (LSU) of ribulose- 1, 5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) in wheat (Triticum aestivum L. cv. Yangmai 158) leaves was investigated. A 50 kDa fragment, a portion of the LSU of Rubisco, was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with antibody against tobacco Rubisco in crude enzyme extract of young wheat leaves. The appearance of the 50 kDa fragment was most obvious at 30-35 ℃ and pH 5.5. The LSU and its 50 kDa fragment both existed when the crude enzyme extract was incubated for 60 min. The amount of LSU decreased with incubation time from 0 to 3 h in crude enzyme extract. However, the 50 kDa fragment could not be found any pH from 4.5 to 8.5 in chloroplast lysates of young wheat leaves. In addition,through treatment with various inhibitors, reactions were inhibited by cysteine proteinase inhibitor E-64 or leupeptin.  相似文献   

4.
The degradation of the large subunit (LSU) of ribulose- 1, 5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) in wheat (Triticum aestivum L. cv. Yangmai 158) leaves was investigated. A 50 kDa fragment, a portion of the LSU of Rubisco, was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with antibody against tobacco Rubisco in crude enzyme extract of young wheat leaves. The appearance of the 50 kDa fragment was most obvious at 30-35 ℃ and pH 5.5. The LSU and its 50 kDa fragment both existed when the crude enzyme extract was incubated for 60 min. The amount of LSU decreased with incubation time from 0 to 3 h in crude enzyme extract. However, the 50 kDa fragment could not be found any pH from 4.5 to 8.5 in chloroplast lysates of young wheat leaves. In addition,through treatment with various inhibitors, reactions were inhibited by cysteine proteinase inhibitor E-64 or leupeptin.  相似文献   

5.
Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole.  相似文献   

6.
Lysates of chloroplasts isolated from naturally senescing wheat leaves were incubated in darkness. The 44-kDa fragment, lacking the N-terminal-side portion of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (LSU), was found by immunoblotting with the LSU site-specific antibodies. Analysis of its N-terminal amino acid sequence indicated that the LSU was specifically cleaved at the peptide bond between Phe-40 and Arg-41. The site was located on the surface of the molecule and faced outward. Such cleavage of the LSU has not been previously reported. It is indicated that the cleavage was triggered by an unknown protease existing in chloroplasts.  相似文献   

7.
The large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) is degraded into an N-terminal side fragment of 37 kDa and a C-terminal side fragment of 16 kDa by the hydroxyl radical in the lysates of chloroplasts in light (H. Ishida et al. 1997, Plant Cell Physiol 38: 471–479). In the present study, we demonstrate that this fragmentation of the LSU also occurs in the same manner in intact chloroplasts, and discuss the mechanisms of the fragmentation. The fragmentation of the LSU was observed when intact chloroplasts from wheat leaves were incubated under illumination in the presence of KCN or NaN3, which is a potent inhibitor of active oxygen-scavenging enzyme(s). The properties, such as molecular masses and cross-reactivities against the site-specific anti-LSU antibodies, of the fragments found in the chloroplasts were the same as those found in the lysates. These results indicate that, as in the lysates, the fragmentation of the LSU in the intact chloroplasts was also caused by the hydroxyl radical generated in light. The fragmentation of the LSU was completely inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU), and only partially inhibited by methyl viologen in the lysates. The addition of hydrogen peroxide to the lysates stimulated LSU fragmentation in light, but did not induce any fragmentation in darkness. Thus, we conclude that both production of hydrogen peroxide and generation of the reducing power at thylakoid membranes in light are essential requirements for fragmentation of the LSU. Received: 14 June 1997 / Accepted: 28 August 1997  相似文献   

8.
Identification of clp genes expressed in senescing Arabidopsis leaves.   总被引:4,自引:0,他引:4  
Clp protease is a highly selective protease in E. coli, which consists of two types of subunits, the regulatory subunit with ATPase activity, ClpA, and the catalytic subunit, ClpP. In order to examine the possible association of plant Clp protease with the degradation of protein in senescing chloroplasts, we isolated a cDNA clone for ClpC which is a plant homologue of ClpA from Arabidopsis thaliana in addition to ERD1 which we had isolated earlier [Kiyosue et al. (1993) Biochem. Biophys. Res. Commun. 196: 1214]. We also isolated a clone for the plastidic gene, clpP (pclpP) and cDNA clones for putative nuclear clpP genes (nclpP1-6). We analyzed the expression of these clp genes in Arabidopsis leaves after various dark periods and during natural senescence. The expression of erd1 was increased by dark-induced and by natural senescence, as reported earlier [Nakashima et al. (1997) Plant J. 12: 851], while that of AtclpC was decreased. Two catalytic subunits nclpPs (nclpP3 and nclpP5) showed high expression in naturally senescing leaves, but the expression of pclpP and the other nclpPs was not changed. Immunoblot analysis of chloroplast protein and in vitro import analysis demonstrated that both nucleus-encoded regulatory subunits as well as nClpP5 were localized in the chloroplast stroma. These observations suggest that chloroplast Clp protease is composed of very complicated combinations of subunits, and that ERD1, nClpP5 and pClpP have a role in the concerted degradation of protein in senescing chloroplasts.  相似文献   

9.
Degradation of chloroplasts is shown in mesophyll cells of primary leaves of wheat. The sequence of ultrastructural changes in chloroplasts of naturally senescing leaves is compared with that of detached, aging leaves. In chloroplasts of naturally senescing leaves, the first indications of aging are the appearance of osmiophilic globuli and reorientation of the thylakoidal system. The membranes of the grana and intergrana lamellae then become distended and later dissociate into distinct vesicles. Concurrent with these membrane changes, osmiophilic globuli increase in size and number, and the stroma breaks down. Finally, the chloroplast envelope ruptures and plastid contents disperse throughout the cell's interior. In chloroplasts of mesophyll cells in detached, aging leaves, initial changes also include appearance of osmiophilic globuli, but later stages of chloroplast degradation are different. The chloroplast envelope ruptures before the lamellae break down. Swelling of grana and intergrana lamellae is not pronounced and, additionally, the thylakoidal system degenerates without forming vesicles or numerous osmiophilic globuli. These differences in the sequence of chloroplast degradation indicate that naturally senescing leaves rather than detached, aging leaves should be used in studies of chloroplast senescence.  相似文献   

10.
Summary The possible involvement of vacuolar cysteine proteinases in degradation of ribulose-bisphosphate carboxylase (Rubisco) in senescing French bean leaves was studied by ultrastructural and immunocytochemical analyses with antibodies raised against the large subunit (LSU) of Rubisco and SH-EP, a cysteine proteinase fromVigna mungo that is immunologically identical to one of the major proteinases of French bean plants. Primary leaves of 10-day-old plants were detached and placed at 25 °C in darkness for 0, 4, and 8 days to allow their senescence to proceed. The leaves at each senescence stage were subjected to the conventional electron microscopic and immunocytochemical studies. The results indicated that the chloroplasts of senescing French bean leaves were separated from the cytoplasm of the cell periphery and taken into the central vacuole and that the Rubisco LSU in the chloroplasts was degraded by vacuolar enzymes such as an SH-EP-related cysteine proteinase that developed in senescing leaves. The present results together with the results of previous biochemical studies using vacuolar lysates support the view that Rubisco is degraded through the association of chloroplasts with the central vacuole during the senescence of leaves that were detached and placed in darkness.  相似文献   

11.
In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.  相似文献   

12.
13.
Landry LG  Pell EJ 《Plant physiology》1993,101(4):1355-1362
Exposing hybrid poplar (Populus maximowizii x trichocarpa) plants to ozone (O3) resulted in an acceleration of the visual symptoms of senescence and a decrease in the activity and quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Whole plants, crude leaf extracts, and isolated intact chloroplasts of hybrid poplar clone 245 were used to test the hypothesis that O3-induced structural modifications of Rubisco affect the activity of this key photosynthetic enzyme. Proteolytic activity, per se, could not account for losses in Rubisco; acidic and alkaline protease activities declined or were unaffected in foliage of O3-treated poplar saplings. In vitro treatment of leaf extracts with O3 decreased total Rubisco activity and binding of the enzyme's transition-state analog, 2-carboxyarabinitol bisphosphate. Additionally, O3 increased the loss of Rubisco large subunit (LSU) when extracts were incubated at 37[deg]C. Treatment of isolated intact chloroplasts with O3 accelerated both the loss of the 55-kD Rubisco LSU and the accumulation of Rubisco LSU aggregates, as visualized by immunoblotting. The time-dependent modification in Rubisco structure was the primary response of the isolated organelles to O3 treatment, with little proteolytic degradation of the LSU detected.  相似文献   

14.
A proteomics approach has been used to study changes in protein abundance during leaf senescence in white clover. Changes in cell ultrastructure were also examined using transmission electron microscopy. The most obvious ultrastructural changes during senescence occurred in chloroplasts, with progressive loss of thylakoid integrity and accumulation of osmiophilic globules in the stroma. Quantitative analysis of 590 leaf protein spots separated by two-dimensional electrophoresis indicated that approximately 40% of the spots showed significant senescence related changes in abundance. Approximately one-third of the protein spots present in mature green leaves were also visible by two-dimensional electrophoresis of an isolated chloroplast fraction, and these spots represented a major proportion of the proteins showing senescence related declines in abundance. Chloroplast proteins that were identified by matrix-assisted laser desorption/ionization-time of flight mass fingerprinting included rubisco large and small subunits, a rubisco activase and the 33 kDa protein of the photosystem II oxygen-evolving complex. These proteins declined in abundance late in senescence, indicating that the photosynthetic apparatus was being degraded. A chloroplast glutamine synthetase showed partial decline in abundance during late senescence but was maintained at levels that may support provision of glutamine for export to other tissues. The results emphasise the importance of proteolysis, chloroplast degradation and remobilisation of nitrogen in leaf senescence.  相似文献   

15.
The senescence-induced staygreen protein regulates chlorophyll degradation   总被引:15,自引:1,他引:14  
Park SY  Yu JW  Park JS  Li J  Yoo SC  Lee NY  Lee SK  Jeong SW  Seo HS  Koh HJ  Jeon JS  Park YI  Paek NC 《The Plant cell》2007,19(5):1649-1664
  相似文献   

16.
In order to elucidate the possibility of in vivo oxidative modification of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39) as a triggering mechanism for its preferential degradation early in senescence, some antioxidant compounds, protective enzymes, H2O2 and protein carbonylation levels were studied in the leaves during dark-induced senescence of barley (Hordeum vulgare L. cv. “Obzor”) seedlings. Analyses were performed in extracts as well as in purified chloroplasts. Some weakening of the antioxidative protection was detected during the treatment: diminution in the ascorbate and non-protein SH (mainly glutathione) pools, lower activities of superoxide dismutase, guaiacol and ascorbate peroxidases. However, no accumulation of H2O2 was found, lower level of protein carbonylation in darkness was measured and the percentage of reduced ascorbate was maintained high. Data concerning antioxidant compounds in chloroplasts revealed some impairment of the ascorbate and glutathione pools under induced senescence - the level of non-protein thiols declined during early senescence whereas the ascorbate pool was not significantly changed. The percentage of reduced ascorbate remained high in the chloroplasts and the activities of superoxide dismutase and of ascorbate peroxidase were conserved. Taken together the results are not in accordance with the possibility of in vivo oxidative modification of Rubisco in the case of dark-induced senescence. Our data bring some support to the view about redox regulation of Rubisco turnover in senescence through the pool of the low-molecular chloroplastic thiols.  相似文献   

17.
Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.  相似文献   

18.
MORITA  K. 《Annals of botany》1980,46(3):297-302
In order to ascertain the possibility that nitrogen associatedwith chloroplasts serves as a major source of nitrogen redistributedfrom senescent leaves, chloroplasts were isolated from riceleaves and changes with leaf age in total leaf nitrogen andchloroplast nitrogen were examined. Results presented here showthat decrease in total leaf nitrogen during leaf senescencewas closely correlated with decrease of chloroplast nitrogenand roughly 85–95 per cent of leaf nitrogen released fromsenescent leaves during the experimental period could be accountedfor by a loss of chloroplast nitrogen. By dividing chloroplastnitrogen into two fractions, i.e. lamellar and stroma fractions,the question of which fraction was more deeply concerned withthe loss of leaf nitrogen was clarified. Results suggested thatin the vegetative stage of plant growth the stroma was mainlyresponsible for the loss of leaf nitrogen. On the other hand,nitrogen was released from lamellar and stromal fractions atalmost the same rate during the reproductive stage. Oryza sativa L., rice, chloroplasts, nitrogen, leaf senescence  相似文献   

19.
Changes in the number and size of chloroplasts in mesophyllcells were investigated in primary leaves of wheat from fullexpansion to yellowing under different growth conditions. Thenumber of chloroplasts per cell decreased slowly, although thedecrease was steady and statistically significant, until thelast stage of leaf senescence, when rapid degradation of chloroplaststook place. Rates of leaf senescence, or the decline in thenumber of chloroplasts, varied greatly among plants grown atdifferent seasons of the year, but about 20% of chloroplastsalways disappeared during the phase when steady loss of chloroplastsoccurred. The area of chloroplast disks also decreased graduallybut significantly, with a rapid decrease late in senescence.Thus, the total quantity of chloroplasts per mesophyll celldecreased substantially during leaf senescence. Yellowed leavescontained numerous structures that resemble oil drops but nochloroplasts. Decreases in rates of photosynthesis that occurduring senescence may, therefore, be largely due to decreasesin the quantity of chloroplasts. However, a better correlationwas found between the decrease in the maximum capacity for photosynthesisand the degradation of RuBP carboxylase. When plants had beengrown with a sufficient supply of nutrients, the number of chloroplastsdecreased steadily but at a reduced rate and the reduction inthe area of chloroplast disks was strongly suppressed. Thus,the quantitative decrease in chloroplasts in senescing leavesappears to be regulated by the requirements for nutrients (nitrogen)of other part of the plant. 3Present address: Department of Biology, Faculty of Science,Toho University, Miyama, Funabashi, Chiba, 274 Japan  相似文献   

20.
Intact chloroplasts were isolated from developing first leaves of spinach. The chloroplasts were broken and separated into an extensively washed membrane (thylakoid) fraction and a soluble (stroma) fraction. The membrane fraction contained polyribosomes with properties similar to those of thylakoid-bound polyribosomes of other organisms. The distribution of mRNA for large-subunit ribulosebisphosphate carboxylase (LS) was determined by translating RNA from chloroplasts, thylakoids, and stroma in a wheat germ cell-free translation system. LS translation product was identified by immunoprecipitation with antibody to LS from spinach, electrophoresis of the immunoprecipitated product, and fluorography. At least 44% of translatable chloroplast LS-mRNA was in the washed thylakoid fraction. Thylakoid-bound LS-mRNA was in polyribosomes since LS was produced by thylakoids in an Escherichia coli cell-free translation system under conditions where initiation did not take place. Our results demonstrate that membrane-bound polyribosomes can synthesize the stroma-localized polypeptide LS, and suggest that the thylakoids may be an important site of its synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号