首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored whether epidermal pressure regulates cell and organgrowth in leaflets ofPisum sativumvar.argenteum,a mutant cultivarof the garden pea characterized by reduced adhesion betweenthe epidermis and subjacent mesophyll. Developing leaflets ofleaves arising at three positions on the seedling axis werepeeledin situand grown to maturity in humidity chambers. Themature anatomy and morphology could be accurately assessed becausewound responses normally associated with peeling were preventedby theArgmutation that permitted peeling without damage to themesophyll and by the humidity chambers that protected peeledareas from desiccation. The mesophyll cell size, state of differentiation,and layering pattern as well as the overall morphology of mature,peeled leaflets were indistinguishable from those of mature,intact leaflets grown under the same conditions. The epidermisexerted no detectable regulatory effect on the expansion ofthe leaflets as a whole or on the tissue layers and cells withinthe leaflets.Copyright 1999 Annals of Botany Company. Biomechanics, compression, epidermis, leaf development, mesophyll, pressure, wound response,Pisum sativumvar.argenteum.  相似文献   

2.
Epidermal and mesophyll tissues of Commelina communis L. andVicia faba L. were analysed by atomic absorption spectrometryfor the major plant inorganic cations and anions (K, Na, Ca,Mg, P, NO3-N, Cl) when stomata of the leaf were open and closed.Water-soluble and residual levels of the elements were estimatedand a charge balance of the soluble fraction made. The major portion of K, Na, Cl, and P was extracted in the water-solublefraction of the epidermal and mesophyll tissues of both species.In both species the bulk of Ca remained in the insoluble residueof the epidermis whereas in mesophyll tissue it was equallydistributed be-between the two fractions in C. communis butmainly in the insoluble residue in V. faba. Magnesium was predominantlyfound in the water-soluble fraction of V. faba mesophyll tissueand distributed approximately equally between the two fractionsin the epidermal tissue. In C. communis Mg was slightly moreabundant in the water-soluble fraction of both mesophyll andepidermis. In both species no statistically significant differences inthe levels of the elements could be detected between epidermaland mesophyll tissues from leaves with open stomata and thesame tissues from leaves with closed stomata, suggesting thatthere was no major flux of ions between mesophyll and epidermisduring stomatal movements. Regardless of whether the stomata were open or closed, therewere considerably more water-soluble inorganic cations thananions present in all tissues of both species with K being themajor cation and Cl being the major anion. In V.faba and C-communis epidermis there was 49–53 per cent and 56%68per cent excess cation respectively. In the mesophyll tissuethe excess cation was 63–75 per cent and 75%78 per centin V.faba and C. communis respectively. When the partitioning of the levels of the elements betweenepidermis and mesophyll of a leaf is considered, except forNO3-N in both species and Na in V. faba, 20 per cent or lessof each element was present in the epidermis.  相似文献   

3.
Ash and silica content and their depositional patterns in differenttissues of the mature corn plant (Zea mays L.) were determined.Ash and silica were highest in the leaf blades (up to 16.6 and10.9 per cent, respectively) followed by the leaf sheath, tassel,roots, stem epidermis and pith, and ear husk. The percentageof ash as silica was also highest in the leaves. Silica wasextremely low in the kernels. The upper stem epidermis and pithcontained nearly twice the silica content as did the lower portion.The patterns of ash and silica distribution were similar inplants grown in two different areas of Kansas, but were in lowerconcentration in the leaves and leaf sheaths from the area withlower soluble silica in the soil. Silica was deposited in theepidermis in a continuous matrix with cell walls showing serratedinterlocking margins in both leaves and stem. Rows of lobedphytoliths of denser silica were found in the epidermis as wellas highly silicified guard cells and trichomes. The silica matrixof the epidermis appears smooth on the outer surface and porousor spongy on the inner surface. Zea mays L. Corn, maize, ash content, silica deposition, scanning electron microscopy  相似文献   

4.
Young (i.e. 5-mm long) leaves of the window-plant Frithia pulchra(Mesembryanthemaceae) allocate approx, 21 % of their volumeto epidermis, 49 % to chlorenchyma, and 29 % to window tissue.By the time leaves are 25 mm long, the relative volumes of epidermisand chlorenchyma decrease to approx, 7 and 27 % respectively.During the same period, the relative volume of window tissueincreases from 29 to 66 %. The relative volumes of epidermis,window, and chlorenchyma tissues do not change as leaf lengthincreases from 25 to 57 mm. These results indicate that earlystages of leaf development in F. pulchra involve preferentialreallocations of volume to different tissues, whereas laterstages of leaf development involve uniform expansion of allof the leaf's tissues (i.e. the relative volumes of tissuesdo not change). The relative volumes of epidermis and windoware always largest in the lower third of a leaf. The relativevolume of chlorenchyma is largest in the upper third of youngleaves but becomes constant in the upper two thirds of leavesduring later stages of development. These results, indicatingthat leaves and tissues of F. pulchra are asymmetric and developpolarly, are discussed relative to corresponding studies ofcellular size and leaf structure. Frithia pulchra, leaf development, Mesembryanthemaceae, stereology, window plant  相似文献   

5.
Effect of Peeling on IAA-induced Growth in Avena Coleoptiles   总被引:1,自引:0,他引:1  
POPE  D. G. 《Annals of botany》1982,49(4):493-501
The act of peeling removes the epidermis exclusively from Avenacoleoptiles. Peeling inhibits IAA-induced growth, by inhibitingthe growth of segments incubated in the presence of IAA, andpromoting that of those incubated in water. The magnitude ofthe inhibition of IAA-induced growth is proportional to theamount of epidermis removed. It is shown that neither lateralswelling, wounding, anaerobiosis, nor exposure to supraoptimalconcentrations of IAA cause the inhibition. It is concludedthat in Avena coleoptiles the epidermis regulates the rate ofexpansion of the underlying parenchyma cells and is the principaltarget of IAA-action. Avena sativa L., oat, coleoptile, indol-3-ylacetic acid, auxin, extension growth  相似文献   

6.
Distribution of silicified cells in the leaf blades of Pleioblastuschino was investigated using a light microscope and a scanningelectron microscope equipped with an energy dispersive X-raymicroanalyser. The most dense accumulation of silica was foundin epidermal tissues. Little silica was deposited in vascularbundles and chlorenchyma, while more was deposited in bundlesheath and fusoid cells. In the epidermis, silica density andfrequency of silicified cells differed depending on cell type,although silica deposition was observed in most cell types.Heavy deposition was found in silica cells, bulliform cells,micro hairs and prickle hairs. Silica cells were the cell typemost frequently silicified (96.9–99.7%) in the adaxialand abaxial epidermis. Silica may be deposited as leaf tissuesage.Copyright 2000 Annals of Botany Company Pleioblastus chino(Franchet et Savatier) Makino, bamboo, silicified cells, leaf blade, epidermis, chlorenchyma, silica, clearing method, freeze-fracturing, freeze-drying, light microscopy, scanning electron microscopy, X-ray microanalysis  相似文献   

7.
Diurnal fluctuation of light and dark CO2 fixation in peeledand unpeeled leaves of Bryophyllum daigremontiana was examined.A distinct difference in light CO2 fixation was observed inunpeeled leaves but not in peeled ones. No measurable differencein dark CO2 fixation was observed in either type. These resultsindicate that the leaves of CAM plants have a high capacityfor CO2 fixation in the daytime, but it is suppressed by theclosing of the stomata. Also, the rapid depression of CO2 uptakewhen the illumination was directed at on dark acidified leavescould be prevented by peeling off the epidermis. The net photosyntheticCO2 uptake in peeled leaves was 77 µmoles/mg chllrophyll/hrin the 3rd leaf and 62 in the 4th leaf. (Received August 7, 1978; )  相似文献   

8.
The distribution of free sugars and organic acids between theepidermis and mesophyll of Tulipa gesneriana L., Vicia fabaL., and Commelina communis L. leaves was studied using mainlygas-liquid chromatography. Fructose, glucose, sucrose, and myo-inositol were found in theepidermis and mesophyll of all three species. In T. geenerianaleaf tissues arabinose (trace levels), stachyose, tuliposidesA and B (mainly in the mesophyll), and xylose (trace levelsalso in V. faba tissues) were also detected. The acids were more difficult to detect and identify, beingat considerably lower concentrations than the sugars in bothtissues. Fumaric, citric, malic, ascorbic (trace levels), andan unidentified acid were common to the epidermis and mesophyllof all three species. Of special interest was the detectionof large amounts of glyceric acid in the epidermis and mesophyllof V. faba; this acid was not detected in the tissues from theother species. Fumaric acid was also very abundant in the epidermisof V.faba. A special study was made of the compartmentation of acids andsugars between the epidermis and mesophyll of T. geenerianaleaves after light and dark treatments. No changes in free acidor sugar levels were detected in the epidermis or mesophyllafter these treatments. Except for suceinic acid (P < 0·05),there were no statistically significant differences in acidlevels between the epidermis and mesophyll but for most of thesugars (myo-inositol, arabinose, and xylose being exceptions)differences were highly significant (P < 0·001), highestlevels occurring in the mesophyll. The differences in sugarlevels and the similarity in acid levels between epidermis andmesophyll of tulip leaves were considered to be essentiallydue to the different CO2 fixing mechanisms and capacities ofthe two tissues. The energy source for the essentially non-greenepidermal tissue was discussed.  相似文献   

9.
This is the first report of an extrafloral nectary (EFN) fromAsian Meliaceae and from subfamily Melioideae. The pinnatelycompound leaf of Cipadessa baccifera has 25–35 small,ellipsoidal EFNs abaxially on the rachis, with occasional EFNson leaflets. EFNs secrete nectar until leaf maturity, then graduallywither. Each convex, ellipsoidal EFN is parenchymatous, withouta palisade epidermis, a delimiting nectary sheath, or any vascularaffiliation. This EFN differs markedly from the typical ‘Flachnektarien’EFN described earlier from neotropical Swietenia species. Cipadessa baccifera (Roth.) Miq., extrafloral nectary, Meliaceae, nectary anatomy  相似文献   

10.
Extensive investigations on the anatomy of the two leaf typesin a seasonally dimorphic subshrub revealed interesting variationsbetween summer and winter leaves. Summer leaves of Sarcopoteriumspinosum possess a thick epidermis composed of tannin-containingcells and large amounts of mucilage secreted through the innerpericlinal walls towards the mesophyll. A thick cuticle is alsopresent on the surface of the leaf. In winter leaves the epidermalcells produce no mucilage while phenolics are accumulated ingranular form only. Besides these, some other variations betweensummer and winter leaves are also discussed in respect of theability of the plant to withstand the unfavourable Mediterraneanconditions. Seasonal dimorphism, leaf anatomy, Sarcopoterium spinosum  相似文献   

11.
Trifolium alpinum L. is a high-quality alpine forage plant growingspontaneously from 1900 to 2800 m above sea level and is widelydistributed in Piedmont and the Valle d'Aosta (Italy), whereit can reach population frequencies of 90 per cent. Yields weredetermined on forage harvested in the Valle dell'Orco (Piedmont)and were comparable to cultivated clovers from higher latitudes;yields decreased progressively as the elevation increased. Thechemical and nutritional characteristics of the forage, thoughcomparable to clovers cultivated in the Po valley (Italy), were,however, more constant. The structure of the leaf lamina asrelated to elevation was investigated using light microscopy,TEM and SEM. This is complemented by data on chlorophyll concentration,succulence, specific leaf weight and area. At all elevationsT. alpinum lacks, apart from bundle sheath cell chloroplastsin a centrifugal arrangement, the structural characteristicsof C4 plants. The chlorophyll a:b ratio (less than four) istypical of a C2 plant. Succulence indices (S and Sm) were verylow, making CAM pathway photosynthesis unlikely. Unusual anddifficult to interpret structures included: small functionalchloroplasts in both the epidermises, stomata present almostexclusively in the upper epidermis and mitochondria enveloped(or enclosed) by chloroplasts. It was observed that, as theelevation increases, populations are selected which are well-adaptedfor gas exchange (increase in specific leaf area, stomatal densityand intercellular spaces) and characterized by a decrease inthe grana thylacoid:integrana thylacoid ratio (consistent withthe increase in the chlorophyll a:b ratio), the per cent water,Sm and the specific leaf weight. Trifolium alpinum L., alpine trefoil, leaf structures, photosynthesis, yield, elevation, C2, C4  相似文献   

12.
Epidermal strips and leaf fragments of Commelina and leaf fragmentsof maize were incubated on solutions containing naturally-occurringor synthetic cytokinins and/or ABA. The effects of these treatmentson stomatal behaviour were assessed. Cytokinins alone did notpromote stomatal opening in either species but concentrationsof both zeatin and kinetin from 10–3 to 10–1 molm–3 caused some reversal of ABA-stimulated closure ofmaize stomata. The reversal of the ABA effect increased withincreasing cytokinin concentration. Cytokinins had no effecton ABA-stimulated closure of Commelina stomata. When appliedalone, at high concentration (10–1 mol m–3), toCommelina epidermis or leaf pieces both zeatin and kinetin restrictedstomatal opening. Key words: ABA, Cytokinins, Stomata, Maize, Commelina  相似文献   

13.
Seedlings of Brassica oleracea var. gemmifera DC. (Brusselssprouts) were grown in four pot sizes over a 4-week period.Whole plant, stem, root and foliage d. wts and foliage area,together with specific leaf area, leaf area ratio and numberof leaves initiated were reduced by restricting rooting space.Individual leaves showed similar reductions in d. wt and area,with the effect being more pronounced in later-formed leaves.Cell counts and measurements on the epidermis and palisade mesophylllayers of the first four leaves showed that the reduction ingrowth was due to reduced cell division. Cell numbers in thefirst-formed leaf were halved over the range of pot sizes used,and there was a progressively greater reduction in cell numbersin later-formed leaves. There was some tendency for cell sizeto decrease with decreasing rooting space, but this was notgeneral and was most marked between plants grown in the twosmallest pot sizes. Brassica oleracea var. gemmifera, Brussels sprouts, rooting space, growth analysis, leaf growth, cell numbers, cell sizes  相似文献   

14.
Salt Glands in the Zoysieae   总被引:5,自引:0,他引:5  
Salt glands were found in two species of the genus Zoysia ofthe tribe Zoysieae, sub-family Chloridoideae (Poaceae). Glandsprotrude from and are recumbent to the leaf epidermis, and consistof two cells, a basal cell and upper cap cell. Glands were betterdeveloped on the adaxial surfaces. Those on the abaxial surfaceappear to be non-functional. Zoysia matrella, the more salt-tolerantspecies, had a higher density of larger glands, and secretedmore sodium per unit leaf mass, resulting in much lower leafsap osmolalities than those of the more salt-sensitive Z. japonica.The finding of salt glands in the tribe Zoysieae confirms itsrelation to the four other tribes within the sub-family Chloridoideaein which salt glands have previously been reported. Salt glands, Zoysieae, Poaceae, Japanese lawngrass, Zoysia japonica, Manilagrass, Zoysia matrella, sodium chloride, salt tolerance, secretion  相似文献   

15.
Leaf resistances of 14 cultivated potato genotypes (Solanumspp) and three tuber-bearing wild Solanum species were comparedwhen plants were grown under water stress at two tropical sitesFactors investigated were diurnal changes in leaf resistance,the effect of plant age, transient drought versus well-wateredconditions of potted and field-grown plants These measurementswere carried out in order to determine the stomatal behaviourof tuber-bearing genotypes and species Significant genotypic differences in leaf resistances were notedwithin the cultivated genotypes All genotypes had higher resistanceswhen water-stressed, but LT-7 appeared to have the lowest leafresistances Genetic differences in stomatal behaviour of tuber-bearingSolanum species were confirmed Abaxial stomatal resistancesof water-stressed plants of the species ranged between 1 74and 13 8 s cm–1 Stomata of S chacoense were less affectedby drought (three-fold) than S tuberosum (four-fold) The greatesteffect was on S jungasense (five-fold) and on S raphanifoliumThese data show that stomata behaviour among tuber-bearing Solanumspecies is sufficiently different to warrant investigationsof drought-resistance in potato species under dry hot conditions Solanum tuberosum L., Solanum raphanifolium, Solanum chacoense, Solanum jungasense, leaf resistance  相似文献   

16.
Plants of Acacia and Eucalyptus species were grown under differentlevels of shading, nutrition, and irrigation to assess the effectof these factors on plant water use. Water use per unit of leaf(phyllode) area was affected only by the irrigation treatment,control plants that had received water daily using appreciablymore water than plants that had been repeatedly subjected towater stress. Water stress conditioning had little or no effecton plant height, leaf (phyllode) area, or minimum stomatal resistancein any of the species. Detailed study of the water stress conditioningof Eucalyptus robusta showed that controls used 46% more waterthan conditioned plants. Leaf area and plant height were unaffectedby conditioning. Control of transpiration was not due to stomatalfunctioning, both sets of plants operating with the same leafdiffusive resistance under conditions of ready water availability.Hydraulic conductivity of the intact root system was loweredby conditioning and it is suggested that this was due, at leastin part, to the effect that conditioning had on root xylem conductivity.Specific conductivity of stem sections was lowered by waterstress conditioning. Water stress avoidance was also associatedwith a more pronounced tendency for stomata to close prior towilting and with a higher level of leaf resistance which couldbe maintained at a low leaf water potential. Conditioned plantsexhibited drought tolerance in their ability to control lossof water from the leaf at lower leaf water potentials than thecontrols.  相似文献   

17.
Three-week acclimation of winter oilseed rape (Brassica napusL. var. oleifera L.) plants in the cold (2 °C) resultedin a modified pattern of leaf cell enlargement, indicated bythe increased thickness of young leaf blades and modified dimensionsof mesophyll cells, as compared with non-acclimated tissuesgrown at 20/15 °C (day/night). The thickness of leaf cellwalls also increased markedly during cold acclimation but itdecreased in response to a transient freezing event (5 °Cfor 18 h followed by 6 or 24 h at 2 °C, in the dark). Cellwalls of the upper (adaxial) epidermis were most affected. Theirultrastructure was modified by cold and freezing treatmentsin different ways, as revealed by electron microscopy. Possiblereasons for the cold- and freezing-induced modifications inthe leaf and cell wall morphology and their role in plant acclimationto low temperature conditions are discussed. Copyright 1999Annals of Botany Company Acclimation, Brassica napus var. oleifera, cell wall ultrastructure, cold, freezing, leaf structure, winter oilseed rape.  相似文献   

18.
Optical replicas of leaf surfaces were made for characterizingthe lens properties of individual epidermal cells. Using a dentallatex, moulds were made of leaf surfaces and subsequently usedto produce agarose replicas. The replicas focused light in amanner similar to intact epidermal cells and it was possibleto measure both focal lengths and intensifications within leafreplicas of Thermopsis montana, Mahonia repens, and Smilacinastellata which had epidermal cells of different diameter. Focallengths ranged from 74—130 µm which indicated thatlight was concentrated within the underlying photosynthetictissues of these leaves. Focal intensifications were measuredsensiometrically and were 1.5 for T. montana and 2-6 for theother species. These values compare favourably with calculatedfocal lengths and measurements taken from isolated epidermallayers. The results indicate that the epidermis can concentratelight within the leaf to amounts well in excess of ambient light.Furthermore, the replicas faithfully reproduced fine anatomicaldetails from a wide variety of leaves and they provide a non-destructiveway to reproduce surface characteristics for anatomical andphysiological studies.  相似文献   

19.
Water Pathways in Leaves of Hedera helix L. and Tradescantia virginiana L.   总被引:2,自引:0,他引:2  
Hydraulic conductances of leaf tissues of Hedera helix and Tradescantiavirginiana leaves were measured. It was found that water couldflow most easily through the veins, but that the cell wallsof at least the ventral epidermis were more efficient at resupplyingwater lost from the epidermal tissue than was the mesophyllat rehydrating itself. Vein and bundle-sheath extensions, whichare characteristic of mesomorphic leaves (e.g. T. virginiana),seem to be important in maintaining a close hydraulic connectionbetween the epidermis and the vascular tissue. In leaves notcontaining vein and bundle-sheath extensions, typically xeromorphicleaves (e.g. H. helix), there is not such a close connectionbetween the epidermis and vascular tissue. This was shown inexperiments involving the sudden application of a reduced pressurepotential to either the epidermis or the other tissues of leaves,and the measurement of transient stomatal opening.  相似文献   

20.
This research examined the hypothesis that as cacti evolve tothe leafless condition, the stem epidermis and cortex becomemore leaflike and more compatible with a photosynthetic role.All cacti in the relict genus Pereskia have non-succulent stemsand broad, thin leaves. All members of the derived subfamilyCactoideae are ‘leafless’, having an expanded cortexthat is the plant's only photosynthetic tissue. In Pereskia,leaves have a high stomatal density (mean: 50.7 stomata mm–2in the lower epidermis, 38.1 mm–2 in the upper epidermis),but stems have low stomatal densities (mean: 11.3 mm 2, threeof the species have none). Stems of Cactoideae have a high stomataldensity (mean: 31.1 mm–2, all species have stomata). Theouter cortex cells of stems of Cactoideae occur in columns,forming a palisade cortex similar to a leaf palisade parenchyma.In this palisade cortex, the fraction of tissue volume availablefor gas diffusion has a mean volume of 12.9%, which is identicalto that of Pereskia leaf palisade parenchyma. Pereskia stemcortex is much less aerenchymatous (mean: 5.3% of cortex volume).Cactoideae palisade cortex has a high internal surface density(0.0207 cm2 cm–2 which is higher than in Pereskia stemcortex (0.0150 cm2 cm–3) but not as high as Pereskia leafpalisade parenchyma (0.0396 cm2 cm–3). Pereskia stem cortexhas no cortical bundles, but Cactoideae cortexes have extensivenetworks of collateral vascular bundles that resemble leaf veins. Cactaceae, cactus, intercellular space, stomatal density, internal surface/volume, evolution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号