首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major O-linked oligosaccharide structures attached to human glycophorin A (GPA) have been extensively characterized previously. Our own recent findings, obtained by immunochemical methods, suggested the presence of blood group A and B determinants in O-glycans of human glycophorin originating from blood group A or B erythrocytes, respectively. Here, we elucidate the structure of O-glycans, isolated from GPA of blood group A, B, and O individuals by reductive beta-elimination, carrying A, B or H blood group epitopes, respectively. Structural studies based on nanoflow electrospray-ionization tandem mass spectrometry and earlier reported data on the carbohydrate moiety of GPA and ABH antigens allowed us to conclude that these blood group epitopes are elongations of the beta-GlcNAc branch attached to C-6 of the reducing GalNAc. The galactose linked to C-3 of the reducing GalNAc carries NeuAcalpha2-3 linked residue. Identified here O-glycans were found in low amounts, their content estimated at about one percent of all GPA O-glycans. These O-glycans with type-2 core, carrying the blood group A, B or H determinants, have not been identified in GPA so far. Our results demonstrate the efficacy of nanoESI MS/MS in detecting minor oligosaccharide components present in a mixture with much more abundant structures.  相似文献   

2.
Total non-acid glycosphingolipids were isolated from the kidneys of single pigs serologically typed on their red blood cells as blood groups O and A. Glycolipid species were purified by HPLC and structurally characterized by thin-layer chromatography, mass spectrometry, proton NMR spectroscopy, degradation analysis, and reactivity with various monoclonal antibodies, Gal alpha 1-4Gal-specific E. coli bacteria, and lectins. Glucosyl-, globotriaosyl-, and globotetraosylceramides were the predominant molecular species with lactosyl- and globopentaosylceramides (IV3GalGb4Cer) as abundant constituents too. Small amounts of galactosyl- and digalactosylceramides were also present. In the blood group O pig kidneys, blood group H antigens based on four different core saccharides (types 1, 2, 4, and lactosyl core) were identified and the major blood group structure was V2FucIV3Gal-Gb4Cer. In the kidneys from the blood group A pig the corresponding blood group A antigens were found and in addition, a type 3 chain blood group A antigen was indicated by mass spectrometry and by its reactivity with a monoclonal antibody. Trace amounts of the type 2 chain-based X and Y antigens were found while blood group B antigens and the type 1 chain based Lewis antigens could not be detected. The ceramide part of the glycolipids was mainly composed of dihydroxy 18:0 long chain bases and non-hydroxy 16:0-24:0 fatty cids.  相似文献   

3.
The structure of the lipid A component of lipopolysaccharides isolated from two wild-type strains (Fisher 2 and 7) and one rough mutant (PAC 605) of Pseudomonas aeruginosa was investigated using chemical analysis, methylation analysis, combined gas-liquid chromatography/mass spectrometry, laser-desorption mass spectrometry and NMR spectroscopy. The lipid A backbone was found to consist of a pyranosidic beta 1,6-linked D-glucosamine disaccharide [beta-D-GlcpN-(1----6)-D-GlcpN], phosphorylated in positions 4' and 1. Position 6' of the beta-D-GlcpN-(1----6)-D-GlcpN disaccharide was identified as the attachment site of the core oligosaccharide and the hydroxyl group at C-4 was not substituted. Lipid A of the three P. aeruginosa strains expressed heterogeneity with regard to the degree of acylation: a hexaacyl as well as a pentaacyl component were structurally characterized. The hexaacyl lipid A contains two amide-bound 3-O-acylated (R)-3-hydroxydodecanoic acid groups [12:0(3-OH)] at positions 2 and 2' of the GlcN dissacharide and two ester-bound (R)-3-hydroxydecanoic acid groups [10:0(3-OH)] at positions 3 and 3'. The pentaacyl species, which represents the major lipid A component, lacks one 10:0(3-OH) residue, the hydroxyl group in position 3 of the reducing GlcN residue being free. In both hexa- and pentaacyl lipid A the 3-hydroxyl group of the two amide-linked 12:0(3-OH) residues are acylated by either dodecanoic (12:0) or (S)-2-hydroxydodecanoic acid [12:0(2-OH)], the lipid A species with two 12:0(2-OH) residues, however, being absent. The presence of only five acyl residues in the major lipid A fraction may account for the low endotoxic activity observed with P. aeruginosa lipopolysaccharide.  相似文献   

4.
The blood group active glycosphingolipids of rat gastric mucosa have been investigated. Only blood group B active structures were found, two of which have been structurally characterized by monoclonal antibodies, mass spectrometry, permethylation analyses, proton NMR spectroscopy, and exoglycosidase digestions. A six-sugar compound based on a gangliotetraosylceramide core was isolated and shown to have the following structure: (Formula: see text). The same compound was recently isolated from rat bone marrow cells and characterized by Taki et al. (Taki, T., Kimura, H., Gasa, S., Nakamura, M., and Matsumoto, M. (1985) J. Biol. Chem. 260, 6219-6225). The possible precursor compounds of this structure, gangliotriaosylceramide and gangliotetraosylceramide, were also found in the gastric mucosa. A seven sugar compound, based on isogloboside, was isolated from the gastric mucosa and shown to have the following structure: (formula; see text) The latter compound is novel and extends the list of different types of core structures found for blood group glycolipids. The epithelial cells of the stomach are unique among the cells lining the gastrointestinal tract in having blood group active glycolipids based on ganglio- and isogloboseries core structures.  相似文献   

5.
The epithelial cells and the non-epithelial residue from large intestine of two inbred rat strains were separated and the glycosphingolipids characterized in comparison with earlier detailed data from small intestine of the same strains. Total acid and non-acid glycolipids were prepared and the non-acid glycolipids were further fractionated into subgroups as acetylated derivatives on silicic acid. The fractions obtained were characterized mainly by thin-layer chromatography, including binding of monoclonal anti-A and anti-B antibody to the chromatogram, and by direct-inlet mass spectrometry after derivatization. This combined technology allowed an overall conclusion from a small number of animals concerning relative amounts of glycolipids, microheterogeneity of blood group glycolipids and carbohydrate sequence and lipophilic components of major species of each subfraction. As for the small intestine, the two separated compartments differed distinctly in composition, with blood group fucolipids being confined to the epithelial cells, and a series of glycolipids with probably internal Galα being restricted to the non-epithelial part. The main difference between large and small intestine concerned fucolipids of the epithelium. Three blood group B active glycolipids with four, six and seven sugars were detected which were absent from the small intestine. The four-sugar glycolipid was a major glycolipid with the structure Galα1 → 3Gal(2 ← 1αFuc)β1 → 4Glcβ1 → 1Cer, as reported before. The six-sugar glycolipid was shown by mass spectrometry and NMR spectroscopy to have the probable structure Galα1 → 3Ga1(2 → αFuc)β1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1Cer. The seven-sugar glycolipid had an additional fucose linked to N-acetylhexosamine, as shown by mass spectrometry. Three blood group A active glycolipids with four, six and seven sugars were found in both rat strains, with sequences analogous to the B glycolipids but with a terminal GalNAc instead of Gal. The four and six-sugar blood group A compounds, but not the seven-sugar glycolipid, have been found before in the small intestine of one of the rat strains. In the small intestine, on the other hand, a branched-chain twelve-sugar blood group A active glycolipid has been found which was absent from the large intestine. Therefore large intestine of both rat strains expressed glycolipid-based blood group A and B activity, while small intestine lacked B activity and showed A activity only in one of the strains. Quantitatively the major glycolipids of the epithelial cells of large intestine were monoglycosylceramides (glucosylceramides, and smaller amounts of galactosylceramides which were absent from small intestinal epithelium) and tetraglycosylceramides (including the A and B active species and a tetrahexosylceramide). The major lipophilic components of the epithelial cell glycolipids were phytosphingosine and long-chain hydroxy fatty acids.  相似文献   

6.
J Davey 《The EMBO journal》1992,11(3):951-960
Conjugation in the fission yeast Schizosaccharomyces pombe is controlled by the action of mating pheromones. Here I describe the isolation and characterization of M-factor, the pheromone released by M-type cells. M-factor is a nanopeptide in which the carboxy-terminal cysteine residue is carboxy-methylated and S-alkylated, probably with a farnesyl residue: Tyr-Thr-Pro-Lys-Val-Pro-Tyr-Met-Cys(S-farnesyl)-OCH3. Evidence for this structure was obtained by amino acid analysis, mass spectrometry and tandem mass spectrometry of the native M-factor. Two genes encoding the M-factor were also identified and characterized. It appears that M-factor is synthesized as a larger precursor which is post-translationally cleaved and modified to yield the active pheromone. The proposed modifications are consistent with mechanisms known to exist in other yeast and higher eukaryotes.  相似文献   

7.
Mating type a cells of the yeast Saccharomyces cerevisiae produce a mating hormone, the a-factor, that we have previously characterized as a very hydrophobic, modified dodecapeptide (Betz, R., Crabb, J. W., Meyer, H. E., Wittig, R., and Duntze, W. (1987) J. Biol. Chem. 262, 546-548). We have investigated the molecular structure in detail using mass spectrometry and proton NMR spectrometry of the intact hormone and authentic component molecules. Tandem mass spectrometry confirms the previously determined peptide sequence of the hormone and shows that it contains additional structural components with masses of 205 and 15 daltons. These were identified by proton NMR and mass spectrometry as a farnesyl (C15H25) residue and a terminal methyl ester group. The farnesyl moiety is attached to the sulfur atom of the carboxyl-terminal cysteine residue, as revealed by NMR of synthetic S-farnesyl cysteine methyl ester. The stereochemical configuration of the farnesyl moiety was determined to be trans,trans by comparison of gas chromatography retention times, mass spectra, and NMR spectra with those of standards. These results define the structure of a-factor as: (Sequence: see text). Replacement of the farnesyl by a methyl group leads to a partial reduction in specific biological activity of the a-factor, whereas hydrolysis of the carboxyl-terminal methyl ester causes a complete loss of activity.  相似文献   

8.
M E Breimer  P A Jovall 《FEBS letters》1985,179(1):165-172
A blood group A glycosphingolipid with the globo-series structure has been isolated from human kidney and structurally characterized. The structure was shown by mass spectrometry and proton NMR spectroscopy of the intact permethylated and permethylated-reduced derivatives together with degradation studies to be, GalNAc alpha 1----3Gal(2----1 alpha Fuc)beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1 Ceramide. This glycolipid reacts with both polyclonal and monoclonal anti-A blood group typing antisera and it is the major glycolipid based blood group A antigen present in the human kidney.  相似文献   

9.
Total neutral glycolipid fractions were isolated from kidney and ureter tissue obtained at autopsy of an individual of the rare blood group A1 Le(a–b+) p. The amount of glycolipids isolated were 3.7 and 2.5 mg g–1 dry tissue weight for the kidney and ureter tissue, which is in the range of reference blood group P kidneys. Part of the kidney glycolipid fraction was subfractionated by HPLC. Glycolipid compounds were structurally characterized by thin-layer chromatography (chemical detection and immunostaining with monoclonal antibodies), proton NMR spectroscopy and mass spectrometry. Globotriaosyl- and globotetraosyl-ceramides, which are the major compounds in kidneys of P individuals, were absent in the p kidney, and a comparatively increased amount of monoglycosyland lactosylceramides was found. A shift to longer fatty acyl chains in the ceramide part of lactosylceramides was noted. Elongated globoseries compounds with five to seven sugar residues, including the blood group A type 4 chain structure, were lacking. A slight increase in neolactotetraosyl- and blood group X pentaglycosyl-ceramides was noticed. The study confirms an enzymatic block in the conversion of lactosylceramide to elongated globoseries compounds in the kidney tissue similar to that of erythrocytes of p individuals.Abbreviations: for blood group glycolipid antigens the short hand designation stands for: blood group — number of sugar residues — type of carbohydrate chain. Thus A-7-4 means a blood group A heptaglycoconjugate on a type 4 chain. The sugar types are abbreviated for mass spectrometry to Hex for hexose, HexNAc forN-acetylhexosamine and dHex for deoxyhexose. HPLC, high-performance liquid chromatography; HPTLC, high performance thin layer chromatography; EI, electron impact ionisation; LSI, liquid secondary ion; MS, mass spectrometry; NMR, nuclear magnetic resonance.  相似文献   

10.
Blood group H antigen with globo-series structure, reacting with the monoclonal antibody MBrl, was isolated and characterized from human blood group O erythrocytes. The structure was identified by methylation analysis, direct probe mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy as shown below: Fucαl → 2Galβl → 3GalNAcβl → 3Galαl → 4Galβl → 4Glcβl → 1Cer  相似文献   

11.
A novel plasmal conjugate of glycosphingolipid having cationic lipid properties was isolated from the white matter of bovine brain. Linkage analysis of galactosyl residue by methylation, liquid secondary ion, and electrospray ionization mass spectrometry of intact and methylated derivatives, and by (1)H- and (13)C-NMR spectroscopy, identified the structure unambiguously as an O-acetal conjugate of plasmal to the primary hydroxyl group of glycerol and to the 6-hydroxyl group of galactosyl residue of beta-galactosyl 1-->1 sphingosine (psychosine). This novel compound is hereby termed "glyceroplasmalopsychosine"; its structure is shown below (see text).  相似文献   

12.
Glycolipids with blood group A activity isolated from human and dog small intestine have been characterized by mass spectrometry of intact lipid in methylated and in methylated and reduced (LiAiH4) form. Without degradative studies the glycolipids were conclusively shown to be hexaglycosyleramides with phytosphingosine as the major long-chain base and hydroxypalmitic acid as the major fatty acid. The exact sugar ratio was hexose-hexosamine-deoxyhexose 3:2:1 and the sequence established as hexosamine-[deoxyhexose-]hexose-hexosamine-hexose-hexose-ceramide. Evidence is presented that mass spectrometry can differential between type ) and type 2 saccharide chains.  相似文献   

13.
C Feckler  G Muster  W Feser  A R?mer  K Palme 《FEBS letters》2001,509(3):446-450
The major auxin-binding protein (ZmERabp1) from maize (Zea mays L.) has been structurally characterized. We determined the position of a disulfide bridge in ZmERabp1 by mass-spectrometric analysis. We show that Cys2 and Cys61 are covalently linked and that residue Cys155 bears the free sulfhydryl group. By making use of electrospray mass spectrometry, the molecular mass of ZmERabp1 was determined to be 20,243 Da comprising a sugar moiety of 1865 Da, corresponding to a high mannose-type glycan structure. Due to the high homology among all characterized ABPs, the information on the disulfide bonds will be important for functional analysis of recombinantly expressed ABP1.  相似文献   

14.
A chemoselective method is described for coupling chlorophyll derivatives with an aldehyde group to synthetic peptides or proteins modified with an aminoxyacetyl group at the epsilon-amino group of a lysine residue. Three template-assembled antiparallel four-helix bundles were synthesized for the ligation of one or two chlorophylls. This was achieved by coupling unprotected peptides to cysteine residues of a cyclic decapeptide by thioether formation. The amphiphilic helices were designed to form a hydrophobic pocket for the chlorophyll derivatives. Chlorophyll derivatives Zn-methyl-pheophorbide b and Zn-methyl-pyropheophorbide d were used. The aldehyde group of these chlorophyll derivatives was ligated to the modified lysine group to form an oxime bond. The peptide-chlorophyll conjugates were characterized by electrospray mass spectrometry, analytical HPLC, and UV/visible spectroscopy. Two four-helix bundle chlorophyll conjugates were further characterized by size-exclusion chromatography, circular dichroism, and resonance Raman spectroscopy.  相似文献   

15.
For the first time, the complete structure of the lipid A from the lipopolysaccharide of an Agrobacterium species is here reported. In particular, the structure of the lipid A from A. tumefaciens strain C58, a soil pathogen bacterium strictly related to Rhizobiaceae, was determined. The structural study, carried out by chemical analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy, revealed that lipid A fraction consisted of a mixture of species all sharing the bis-phosphorylated glucosamine disaccharide backbone that could be designated in two main structural motifs, according to the acylation pattern. The main species was a penta-acylated lipid A bearing two unsubstituted 14:0 (3-OH) fatty acids in ester linkage and two 16:0 (3-OH) in amide linkage; the one on GlcN II was O-acylated by a long chain fatty acid, 28:0 (27-OH). This in turn was esterified by a 3-hydroxy-butyroyl residue at its hydroxy group. The second species, in lesser amounts, was identified as a tetra-acylated lipid A and lacked the 14:0 (3-OH) residue on GlcN I. Other species deriving from these two lacked a phosphate group or 3-hydroxy-butyroyl residue or otherwise carried a 26:0 (25-OH) as long chain fatty acid. The lipid A structure of phytopathogen A. tumefaciens strain C58 presents deep structural analogies with lipid A of symbiotic Rhizobium, and the hypothesis is advanced that it can be a strategy of the bacterium to escape or attenuate the plant response.  相似文献   

16.
Subtilosin A produced by Bacillus subtilis is a macrocyclic peptide antibiotic which comprises 35 amino acids. Its molecular mass (3399.7 Da), determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and chemical properties gave experimental support for unusual intramolecular linkages. The three-dimensional fold of native subtilosin in dimethylsulfoxide was determined from two-dimensional 1H-NMR spectra recorded at 600 MHz. Based on the backbone conformation, a structure for subtilosin A is presented which is characterized by three inter-residue bridges where two cysteines are linked with two phenylalanine residues, respectively, and a third cysteine is bound to a threonine residue.  相似文献   

17.
The O-antigen polysaccharide (OPS) of Rhizobium etli CE3 lipopolysaccharide (LPS) is linked to the core oligosaccharide via an N-acetylquinovosaminosyl (QuiNAc) residue. A mutant of CE3, CE166, produces LPS with reduced amounts of OPS, and a suppressed mutant, CE166 alpha, produces LPS with nearly normal OPS levels. Both mutants are deficient in QuiNAc production. Characterization of OPS from CE166 and CE166 alpha showed that QuiNAc was replaced by its 4-keto derivative, 2-acetamido-2,6-dideoxyhexosyl-4-ulose. The identity of this residue was determined by NMR and mass spectrometry, and by gas chromatography-mass spectrometry analysis of its 2-acetamido-4-deutero-2,6-dideoxyhexosyl derivatives produced by reduction of the 4-keto group using borodeuteride. Mass spectrometric and methylation analyses showed that the 2-acetamido-2,6-dideoxyhexosyl-4-ulosyl residue was 3-linked and attached to the core-region external Kdo III residue of the LPS, the same position as that of QuiNAc in the CE3 LPS. DNA sequencing revealed that the transposon insertion in strain CE166 was located in an open reading frame whose predicted translation product, LpsQ, falls within a large family of predicted open reading frames, which includes biochemically characterized members that are sugar epimerases and/or reductases. A hypothesis to be tested in future work is that lpsQ encodes UDP-2-acetamido-2,6-dideoxyhexosyl-4-ulose reductase, the second step in the synthesis of UDP-QuiNAc from UDP-GlcNAc.  相似文献   

18.
Blood group type glycosphingolipids present in kidneys of blood group A and B human individuals have been isolated and structurally characterized by mass spectrometry, proton NMR spectroscopy, degradation studies and by their reactivity with various monoclonal antibodies andEscherichia coli bacteria. The two major complex glycolipids present in the blood group A and B kidneys were globopentaosylceramide (IV3Gal-Gb4Cer) and the X pentaglycosylceramide (III3Fuc-nLc4Cer). The major blood group A glycolipid in the blood group A kidneys was based on the type 4 chain (globo-series). There were also small amounts of the type 2 chain and trace amounts of the type 1 and type 3 chain based A glycolipids. In addition, the blood group H type 4 chain structure was present together with Lea and Leb compounds. In the blood group B kidneys, the major B glycolipids were monofucosylated hexa- and octaglycosylceramides, where the former were based on the type 2 carbohydrate chain. The blood group B type 4 chain heptaglycosylceramide was found to be a minor component making up only about 1% of the total blood group B structures. Abbreviations: for blood group glycolipid antigens the short hand designation stands for blood group—number of sugar residues—type of carbohydrate chain. Thus A-7-4 means a type 4 chain blood group A heptaglycosylceramide. The sugar types are abbreviated for mass spectrometry to Hex for hexose, HexNAc forN-acetylhexosamine and dHex for deoxyhexose.  相似文献   

19.
Mucin glycopeptides were prepared from the respiratory mucus of a non-secretor, chronic bronchitic patient with blood group O, Lea+b-. Oligosaccharides were released by alkaline borohydride treatment and purified by anion-exchange chromatography, size-exclusion chromatography and high performance anion-exchange chromatography. Structural studies employed 400-MHz 1H-NMR spectroscopy and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Nine monosulfated oligosaccharides ranging in size from tetra- to hexasaccharide, were fully characterized in this study. The sulfate group occurs either on the C-3 of a terminal galactose residue or on the C-6 of a N-acetylglucosamine residue. In keeping with the non-secretor status of the patient, no structure with an (1-2)-linked fucose residue was found. Five of the structures had fucose present in (1-3)-linkage in the X determinant, while only one oligosaccharide (compound 7b) was seen with fucose (1-4)-linked in the Lea determinant. Eight structures isolated from the mucins of the non-secretor patient had not been found previously in the respiratory mucins; they are listed below.  相似文献   

20.
Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号