首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:22,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
We have previously shown that in the human pathogen Neisseria meningitidis group B (MenB) more than 200 genes are regulated in response to growth with iron. Among the Fur-dependent, upregulated genes identified by microarray analysis was a putative operon constituted by three genes, annotated as NMB1436, NMB1437 and NMB1438 and encoding proteins with so far unknown function. The operon was remarkably upregulated in the presence of iron and, on the basis of gel retardation analysis, its regulation was Fur dependent. In this study, we have further characterized the role of iron and Fur in the regulation of the NMB1436-38 operon and we have mapped the promoter and the Fur binding site. We also demonstrate by mutant analysis that the NMB1436-38 operon is required for protection of MenB to hydrogen peroxide-mediated killing. By using both microarray analysis and S1 mapping, we demonstrate that the operon is not regulated by oxidative stress signals. We also show that the deletion of the NMB1436-38 operon results in an impaired capacity of MenB to survive in the blood of mice using an adult mouse model of MenB infection. Finally, we show that the NMB1436-38 deletion mutant exhibits increased susceptibility to the killing activity of polymorphonuclears (PMNs), suggesting that the 'attenuated' phenotype is mediated in part by the increased sensitivity to reactive oxygen species-producing cells. This study represents one of the first examples of the use of DNA microarray to assign a biological role to hypothetical genes in bacteria.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号