首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies indicate that ascorbic acid, when combined with copper or iron cleaves several viral DNA. ln this study, we generated the ascorbate radical anion electrochemically in a simple chemical environment without the participation of a metal ion. This solution possesses viral DNA scission activity. Ohe absence of catalytic metal ions [Fe (III) and Cu(II)] in the incubation medium was evidenced by metal chelating agents such as desferrioxamine and EDTA. Ohe radical quenching at high EDTA concentration was attributed to ionic strength of EDTA rather than metal chelation. Ohe effects of antioxidants, radical scavangers, catalase, superoxide dismutase and some proteins on DNA cleavage have been tested. Cleavage may not arise directly from ascorbate free radical but the reaction of the radical form of ascorbate with oxygen may produce the actual reactive species. Aerobic oxidation of ascorbate itself strictly requires transition metal catalysts, however electrochemically produced ascorbyl radical avoided the kinetic barrier that prevented direct oxidation of ascorbic acid with oxygen and eliminated the need for the transition metal ion catalysts.  相似文献   

2.
The role of trace metals in the generation of free radical mediated oxidative stress in normal human red cells was studied. Ascorbate and either soluble complexes of Cu(II) or Fe(III) provoked changes in red cell morphology, alteration in the polypeptide pattern of membrane proteins, and significant increases in methemoglobin. Neither ascorbate nor the metal complexes alone caused significant changes to the cells. The rate of methemoglobin formation was a function of ascorbate and metal concentrations, and the chemical nature of the chelate. Cu(II) was about 10-times more effective than Fe(III) in the formation of methemoglobin. Several metals were tested for their ability to compete with Cu(II) and Fe(III). Only zinc caused a significant inhibition of methemoglobin formation by Fe(III)-fructose. These observations suggest that site-specific as well as general free radical damage is induced by redox metals when the metals are either bound to membrane proteins or to macromolecules in the cytoplasm. The Cu(II) and Fe(III) function in two catalytic capacities: (1) oxidation of ascorbate by O2 to yield H2O2, and (2) generation of hydroxyl radicals from H2O2 in a Fenton reaction. These mechanisms are different from the known damage to red cells caused by the binding of Fe(III) or Cu(II) to the thiol groups of glucose-6-phosphate dehydrogenase. Our system may be a useful model for understanding the mechanisms for oxidative damage associated with thalassemia and other congenital hemolytic anemias.  相似文献   

3.
The confocal spectral imaging (CSI) technique is described, its basic principles are considered, and a brief review of its applications to the study of biologically active compounds (BAC) within living cells and in tissue slices is presented. This technique is based on measurements and analysis of fluorescence or resonance Raman spectra in each point of the specimen under microscope with a three-dimensional resolution of about cubic micrometer. This technique is applicable to the study of stained fluorescent and nonfluorescent compounds. Unlike the conventional approaches based on the optical microscopy, the CSI technique opens the opportunity for the identification of complexes and microenvironment of BAC in intact cells and thin tissue slices (slices or sections), as well as for the analysis of localization and distribution of compounds of interest and their complexes in cellular organelles and tissue structures. The use of CSI technique in combination with the conventional biochemical and cytological methods makes it possible to significantly expand the informativeness of investigation of modes of action of new BAC.  相似文献   

4.
Aging and age-related diseases are associated with the production of reactive oxygen species which modify lipids, proteins and DNA. Here we hypothesized the glyco- and lipoxidation product N(epsilon)-(carboxymethyl)lysine (CML) in proteins should bind divalent and redox active transition metal binding. CML-rich poly-L-lysine and bovine serum albumin (BSA) were chemically prepared and found to bind non-dialyzable Cu(2+), Zn(2+) and Ca(2+). CML-BSA-copper complexes oxidized ascorbate and depolymerized protein in the presence of H(2)O(2). CML-rich tail tendons implanted for 25 days into the peritoneal cavity of diabetic rats had a 150% increase in copper content and oxidized ascorbate three times faster than controls. CML-rich proteins immunoprecipitated from serum of uremic patients oxidized four times more ascorbate than control and generated spin adducts of DMPO in the presence of H(2)O(2). The chelator DTPA suppressed ascorbate oxidation thereby implicating transition metals in the process. In aging and disease, CML accumulation may result in a deleterious vicious cycle since CML formation itself is catalyzed by lipoxidation and glycoxidation.  相似文献   

5.
Trace amounts of adventitious transition metals in buffer solutions can serve as catalysts for many oxidative processes. To fully understand what role these metals may play it is necessary that buffer solutions be 'catalytic metal free'. We demonstrate here that ascorbate can be used in a quick and easy test to determine if near-neutral buffer solutions are indeed 'catalytic metal free'. In buffers which have been rendered free of catalytic metals we have found that ascorbate is quite stable, even at pH 7. The first-order rate constant for the loss of ascorbate in an air-saturated catalytic metal free solution is less than 6 X 10(-7) s-1 at pH 7.0. This upper limit appears to be set by the inability to completely eliminate catalytic metal contamination of solutions and glassware. We conclude that in the absence of catalytic metals, ascorbate is stable at pH 7.  相似文献   

6.
Aminoacyl-tRNA synthetases from eucaryotic cells generally are isolated as high molecular weight complexes comprised of multiple synthetase activities, and often containing other components as well. A model is proposed for the synthetase complex in which hydrophobic extensions on the proteins serve to maintain them in their high molecular weight form, but are not needed for catalytic activity. The structural similarity of these enzymes to certain membrane-bound proteins, and its implications for synthetase localization and function in vivo, are discussed.  相似文献   

7.
Alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), have been suggested to chelate transition metal ions and, hence, mitigate iron- and copper-mediated oxidative stress in biological systems. However, it remains unclear whether LA and DHLA chelate transition metal ions in a redox-inactive form, and whether they remove metal ions from the active site of enzymes. Therefore, we investigated the effects of LA and DHLA on iron- or copper-catalyzed oxidation of ascorbate, a sensitive assay for the redox activity of these metal ions. We found that DHLA, but not LA, significantly inhibited ascorbate oxidation mediated by Fe(III)-citrate, suggesting that reduced thiols are required for iron binding. DHLA also strongly inhibited Cu(II)(histidine)(2)-mediated ascorbate oxidation in a concentration-dependent manner, with complete inhibition at a DHLA:Cu(II) molar ratio of 3:1. In contrast, no inhibition of copper-catalyzed ascorbate oxidation was observed with LA. To investigate whether LA and DHLA remove copper or iron from the active site of enzymes, Cu,Zn superoxide dismutase and the iron-containing enzyme aconitase were used. We found that neither LA nor DHLA, even at high, millimolar concentrations, altered the activity of these enzymes. Our results suggest that DHLA chelates and inactivates redox-active transition metal ions in small-molecular, biological complexes without affecting iron- or copper-dependent enzyme activities.  相似文献   

8.
A Dasgupta  T Zdunek 《Life sciences》1992,50(12):875-882
The dual role of ascorbate as an antioxidant and a prooxidant has been clearly documented in the literature. Ascorbate acts as an antioxidant by protecting human serum from lipid peroxidation induced by azo dye-generated free radicals. On the other hand, ascorbate is readily oxidized in the presence of transition metal ions, (especially cupric ion) and accelerates lipid peroxidation in tissue homogenates by producing free radicals. Interestingly, we observed an antioxidant rather than an expected prooxidant role of ascorbate when human serum supplemented with 1.2mmol/L ascorbate underwent lipid peroxidations initiated by 2mmol/L copper sulfate. The antioxidant role of ascorbate was confirmed by studying the conventional thiobarbituric acid reactive substances (TBARS) as well as by observing the protective effect of ascorbate on the copper-induced peroxidation of unsaturated and polyunsaturated fatty acids. The antioxidation protection provided by ascorbate was comparable to that of equimolar alpha-tocopherol when incubated for 24h. However, lipid peroxidation products were lower in serum supplemented with alpha-tocopherol after 48h of incubation. This effect may be attributed to the binding of copper by plpha-tocopherol after serum proteins, thus preventing direct interaction between cupric ions and ascorbate. This proposed mechanism is based on the observation that the concentration of ascorbate decreased more slowly in serum than in phosphate buffer at physiological pH. Our results also indicate an outstanding anti-oxidant property of human serum due to the chelation of transition metal ions (even at high concentrations) by various serum proteins.  相似文献   

9.
10.
11.
Confocal spectral imaging (CSI) technique was used for quantitative analysis of the uptake, subcellular localization, and characteristics of localized binding and retention of anticancer agent mitoxantrone (MITOX) within human K562 erythroleukemia cells. The CSI technique enables identification of the state and interactions of the drug within the living cells. Utilizing this unique property of the method, intracellular distributions were examined for monomeric MITOX in polar environment, MITOX bound with hydrophobic cellular structures, naphthoquinoxaline metabolite, and nucleic acid-related complexes of MITOX. The features revealed were compared for the cells treated with 2 microM or 10 microM of MITOX for 1 h and correlated to the known data on antitumor action of the drug. MITOX was found to exhibit high tendency to self-aggregation within intracellular media. The aggregates are concluded to be a determinant of long-term intracellular retention of the drug and a source of persistent intracellular binding of MITOX. Considerable penetration of MITOX in the hydrophobic cytoskeleton structures as well as growing accumulation of MITOX bound to nucleic acids within the nucleus were found to occur in the cells treated with a high concentration of the drug. These effects may be among the factors stimulating and/or accompanying high-dose mitoxantrone-induced programmed cell death or apoptosis.  相似文献   

12.
Summary K562 cells display several possibilities to keep ascorbic acid in the surrounding medium in the reduced state and prevent its loss by degradation of the oxidized form, dehydroascorbic acid: (1) A semidehydroascorbic acid reductase with high affinity for the ascorbate radical scavenges this before it disproportionates into the two parent forms of vitamin C (ascorbate and dehydroascorbic acid). (2) Dehydroascorbic acid in the extracellular medium is slowly converted to ascorbate by a different mechanism with low affinity which may or may not involve uptake of the oxidized and release of the reduced form. (3) Ascorbate remains relatively stable in the cell culture medium in presence, but also in absence of the cells after their removal, This is most probably due to the presence of released peptides in the cell-conditioned medium which can chelate transition metal ions and thus prevent catalytic autoxidation of ascorbate.  相似文献   

13.
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine-citrulline conversion assay and HPLC analysis, respectively. Over a period of 4h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.  相似文献   

14.
The involvement of activated oxygen in the drought-induced damage of pea (Pisum sativum L. cv Frilene) nodules was examined. To this purpose, various pro-oxidant factors, antioxidant enzymes and related metabolites, and markers of oxidative damage were determined in nodules of well-watered (nodule water potential approximately -0.29 MPa) and water-stressed (nodule water potential approximately -2.03 MPa) plants. Water-stressed nodules entered senescence as evidenced by the 30% decrease in leghemoglobin and total soluble protein. Drought also caused a decrease in the activities of catalase (25%), ascorbate peroxidase (18%), dehydroascorbate reductase (15%), glutathione reductase (31%), and superoxide dismutase (30%), and in the contents of ascorbate (59%), reduced (57%) and oxidized (38%) glutathione, NAD+ and NADH (43%), NADP+ (31%), and NADPH (17%). The decline in the antioxidant capacity of nodules may result from a restricted supply of NAD(P)H in vivo for the ascorbate-glutathione pathway and from the Fe-catalyzed Fenton reactions of ascorbate and glutathione with activated oxygen. The 2-fold increase in the content of "catalytic Fe" would also explain the augmented levels of lipid peroxides (2.4-fold) and oxidatively modified proteins (1.4-fold) found in water-stressed nodules because of the known requirement of lipid and protein oxidation for a transition catalytic metal.  相似文献   

15.
to-baccoBright Yellow 2 (BY-2) suspension culture to understand the mechanisms of metal resistance in plant cells.We have analysed superoxide dismutase, catalase, and ascorbate peroxidase enzyme activities and superoxidedismutase-isoforms by isoelectric focusing gels in tobacco cells grown at two different toxic concentrations ofeach of the transition metals: copper, iron, manganese and zinc. Exposure of tobacco cells to these metals causedchanges in total superoxide dismutase activity in a different manner, depending on the metal assayed: after cop-perand manganese treatments, total superoxide dismutase activity was enhanced, while it was reduced after ironand zinc exposure. Superoxide dismutase-isoforms were affected by the metal used, and a Fe-SOD band with thesame isoelectric point as a Cu, Zn-SOD from non-treated cells, was induced after iron and zinc treatments. Cu,Zn-SODs were present in all metal-treatments whereas Mn-SOD was not detected in any case. Concerning otherantioxidant enzymes tested, such as catalase and ascorbate peroxidase, the latter showed a remarkable increase inactivity in response to copper treatments and catalase activity was enhanced after iron and with the lowest man-ganeseconcentration. Lipid peroxidation was increased after each metal treatment, as an indication of the oxi-dativedamage caused by metal concentration assayed in tobacco cells. These results suggest that an activation ofsome antioxidant enzymes in response to oxidative stress induced by transition metals is not enough to confertolerance to metal accumulation.  相似文献   

16.
The (pro)renin receptor [(P)RR] induces the catalytic activation of prorenin, as well as the activation of the mitogen-activated protein kinase (MAPK) signaling pathway; as such, it plays an important regulatory role in the renin–angiotensin system. (P)RR is known to form a homodimer, but the region participating in its dimerization is unknown. Using glutathione S-transferase (GST) as a carrier protein and a GST pull-down assay, we investigated the interaction of several (P)RR constructs with full-length (FL) (P)RR in mammalian cells. GST fusion proteins with FL (P)RR (GST-FL), the C-terminal M8-9 fragment (GST-M8-9), the extracellular domain (ECD) of (P)RR (GST-ECD), and the (P)RR ECD with a deletion of 32 amino acids encoded by exon 4 (GST-ECDd4) were retained intracellularly, whereas GST alone was efficiently secreted into the culture medium when transiently expressed in COS-7 cells. Immunofluorescence microscopy showed prominent localization of GST-ECD to the endoplasmic reticulum. The GST pull-down analysis revealed that GST-FL, GST-ECD, and GST-ECDd4 bound FLAG-tagged FL (P)RR, whereas GST-M8-9 showed little or no binding when transiently co-expressed in HEK293T cells. Furthermore, pull-down analysis using His-tag affinity resin showed co-precipitation of soluble (P)RR with FL (P)RR from a stable CHO cell line expressing FL h(P)RR with a C-terminal decahistidine tag. These results indicate that the (P)RR ECD participates in dimerization.  相似文献   

17.
The heat shock proteins are a family of stress-inducible proteins that act as molecular chaperones for nascent proteins and assist in protection and repair of proteins whose conformation is altered by stress. HSP72 and HSP73 are two major cytosolic/nuclear stress proteins of mammalian cells, with extensive sequence homology. HSP73 is constitutively expressed, whereas HSP72 is highly stress-inducible. However, it is unclear why two isoforms are expressed and whether these two proteins have different functions in the cell. To assist in the delineation of function, we have completed a detailed study of the localization of HSP72 and HSP73 in the cell before and after heat stress, using two different methods of detection. By indirect immunohistochemistry, the localization of these two proteins is similar, cytoplasmic and nuclear in nonstressed cells with a translocation to nucleoli immediately after heat. By the more sensitive immunogold electron microscopy technique, differences in localization were noted. In nonstressed cells, HSP72 was primarily nuclear, localized in heterochromatic regions and in nucleoli. HSP73 was distributed throughout the cell, with most cytoplasmic label associated with mitochondria. Mitotic chromosomes were also heavily labeled. After stress, HSP72 concentrated in nuclei and nucleoli and HSP73 localized to nuclei, nucleoli, and cytoplasm, with increased label over mitochondria. These differences in localization suggest that the HSP72 and HSP73 may associate with different proteins or complexes and hence have different but overlapping functions in the cell.  相似文献   

18.
Rabbit serum against the cysteine-proteinases papain has been employed for the cellular localization of cysteine-proteinases of in Leishmania amazonensis promastigotes. By immunocytochemistry, immune complexes were found in the plasma membrane and in the flagella pocket of the parasite. The antiserum immunoprecipitated major iodinated proteins with molecular masses of 66, 45, 28 and 24 kDa and a wide partitioning of the Triton X-114 detergent phase. The presence of cysteine-proteinase at the cell surface membrane was also suggested by the detection of proteolytic activity in living cells (19.0 microg azocasein min(-1) 10(-7) promastigotes (1.0 S.D. )).  相似文献   

19.
Summary To obtain more insight into catalytic mechanisms of metallo enzymes and specific metal complexation by proteins we use linear and cyclic pseudopeptides as mimetics. Knowledge about tendencies of complex formation of different ligands with selected transition metal ions is an indispensable prerequisite for the development of homo-and hetero-dinuclear metallo enzyme mimetics. Three pseudotripeptide ligands were investigated with respect to formation tendency and properties of complexes with the transition metal ions Cu2+, Zn2+ Ni2+, Co2+ and Mn2+. To study complexation tendencies we applied different methods. One of the important prerequisites for the application in a secreening of series of peptide ligands is the necessity for a minimal amount of substance. We used and compared certain masspectrometric methods for the estimation of a rank order of complexation of certain transition metal ions. We also applied spectrophotometric titration, circular dichroism measurements, capillary electrophoresis and pH-rate profile of catalytic activity in the attempt to evaluate complex formation tendencies. Except for the spectrophotometric pH-titration and the pH-profile of catalytic activity all methods, were applicable, but each method has its advantages and disadvantages depending on the separation effect of the ligand from the metal complex, and depending on the spectroscopic properties of ligand and complex. The results regarding complex formation are compared to each other. Comparison of pairs by MALDI-TOF-and ESI-MS allows an estimation of the rank order of complexation tendency of one ligand with different metal ions and requires the least amount of substance. The other investigated methods provided additional information on structural properties of the formed complexes; however either they required too much pseudopeptide ligand or were not applicable for all transition metal ions used in this study.  相似文献   

20.
The labile iron pool (LIP) plays a role in generation of free radicals and is thus the target of chelators used for the treatment of iron overload. We have previously shown that the LIP is bound mostly to high molecular weight carriers (MW>5000). However, the iron does not remain associated with these proteins during native gel electrophoresis. In this study we describe a new method to reconstruct the interaction of iron with iron-binding proteins. Proteins were separated by native gradient polyacrylamide gel electrophoresis and transfered to polyvinilidene difluoride membrane under native conditions. The immobilized iron-binding proteins are then labeled by 59Fe using a 'titrational blotting' technique and visualized by storage phosphorimaging. At least six proteins, in addition to ferritin and transferrin, are specifically labeled in cellular lysates of human erythroleukemic cells. This technique enables separation and detection of iron-binding proteins or other metal-protein complexes under near-physiological conditions and facilitates identification of weak iron-protein complexes. Using a new native metal blotting method, we have confirmed that specific high molecular weight proteins bind the labile iron pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号