首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In environments characterized by regional heterogeneity among patches, competitor diversity can enhance ecosystem functions such as biomass production. Studies that have addressed the strength of diversity effects in heterogeneous environments have primarily considered a patchy distribution of resources. However, in many systems, top–down effects influence competitor productivity and composition. We use a three‐trophic level consumer–resource model to ask how differential responses to predation influence consumer diversity effects at two scales; 1) in patches with and without predator populations, and 2) at a ‘regional’ scale, consisting of one patch with‐ and one patch without a predator population. At the local scale, the strength and direction of consumer diversity effects depended on the strength of the differential response to predation. Positive or negative influences of consumer richness on equilibrium consumer biomass were the result of a selection effect of diversity. At the regional scale, we observed transgressive overyielding driven by a positive complementarity effect for parameters that define a strong differential response to predation. Given the prevalence of spatially and temporally heterogeneous top–down effects on competitor composition in many ecosystems and trophic levels, we advocate consideration of differential predation as an important step towards incorporating realistic trophic complexity into diversity–function studies.  相似文献   

2.
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.  相似文献   

3.
Environmental heterogeneity may be a general explanation for both the quantity of genetic variation in populations and the ecological niche width of individuals. To evaluate this hypothesis, I review the literature on selection experiments in heterogeneous environments. The niche width usually – but not invariably – evolves to match the amount of environmental variation, specialists evolving in homogeneous environments and generalists evolving in heterogeneous environments. The genetics of niche width are more complex than has previously been recognized, particularly with respect to the magnitude of costs of adaptation and the putative constraints on the evolution of generalists. Genetic variation in fitness is more readily maintained in heterogeneous environments than in homogeneous environments and this diversity is often stably maintained through negative frequency‐dependent selection. Moreover environmental heterogeneity appears to be a plausible mechanism for at least two well‐known patterns of species diversity at the landscape scale. I conclude that environmental heterogeneity is a plausible and possibly very general explanation for diversity across the range of scales from individuals to landscapes.  相似文献   

4.

Background

One of the most common questions addressed by ecologists over the past decade has been-how does species richness impact the production of community biomass? Recent summaries of experiments have shown that species richness tends to enhance the production of biomass across a wide range of trophic groups and ecosystems; however, the biomass of diverse polycultures only rarely exceeds that of the single most productive species in a community (a phenomenon called ‘transgressive overyielding’). Some have hypothesized that the lack of transgressive overyielding is because experiments have generally been performed in overly-simplified, homogeneous environments where species have little opportunity to express the niche differences that lead to ‘complementary’ use of resources that can enhance biomass production. We tested this hypothesis in a laboratory experiment where we manipulated the richness of freshwater algae in homogeneous and heterogeneous nutrient environments.

Methodology/Principal Findings

Experimental units were comprised of patches containing either homogeneous nutrient ratios (16∶1 nitrogen to phosphorus (N∶P) in all patches) or heterogeneous nutrient ratios (ranging from 4∶1 to 64∶1 N∶P across patches). After allowing 6–10 generations of algal growth, we found that algal species richness had similar impacts on biomass production in both homo- and heterogeneous environments. Although four of the five algal species showed a strong response to nutrient heterogeneity, a single species dominated algal communities in both types of environments. As a result, a ‘selection effect’–where diversity maximizes the chance that a competitively superior species will be included in, and dominate the biomass of a community–was the primary mechanism by which richness influenced biomass in both homo- and heterogeneous environments.

Conclusions/Significance

Our study suggests that spatial heterogeneity, by itself, is not sufficient to generate strong effects of biodiversity on productivity. Rather, heterogeneity must be coupled with variation in the relative fitness of species across patches in order for spatial niche differentiation to generate complementary resource use.  相似文献   

5.
Many generalist species consist of specialised individuals that use different resources. This within‐population niche variation can stabilise population and community dynamics. Consequently, ecologists wish to identify environmental settings that promote such variation. Theory predicts that environments with greater resource diversity favour ecological diversity among consumers (via disruptive selection or plasticity). Alternatively, niche variation might be a side‐effect of neutral genomic diversity in larger populations. We tested these alternatives in a metapopulation of threespine stickleback. Stickleback consume benthic and limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes. Intermediate‐sized lakes support generalist stickleback populations using an even mixture of the two prey types, and exhibit greater among‐individual variation in diet and morphology. In contrast, genomic diversity increases with lake size. Thus, phenotypic diversity and neutral genetic polymorphism are decoupled: trophic diversity being greatest in intermediate‐sized lakes with high resource diversity, whereas neutral genetic diversity is greatest in the largest lakes.  相似文献   

6.
Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable.  相似文献   

7.
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant–plant interactions. We tested whether domestication has changed the potential of crop mixtures to over‐yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within‐mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over‐yield and the potential of breeding to re‐establish variance and increase mixture performance.  相似文献   

8.
Within plant communities, niche‐based species sorting can occur among distinct soil patches (microsites), increasing coexistence and diversity. Microsite edges (microedges) may also offer additional niche space. Therefore, in recently abandoned croplands, which often have uniform soils caused by a legacy of tillage (soil homogenization), the plant species diversity of future restoration efforts may be reduced. We conducted an experiment during the early establishment phase (3 years) of a tallgrass prairie restoration on former cropland to determine if soil homogenization decreases species diversity and alters community composition, and if microedges offer additional niche space. Heterogeneous plots with sand‐ or woodchip‐enriched patches were compared to plots made up of the same components, but distributed homogeneously, and pits and mounds were compared to flat topsoil. Homogenization decreased diversity in flat topsoil plots relative to pit plots and increased diversity in woodchip plots. In both cases, the treatments with the lowest canopy cover and greatest plant density had the greatest diversity. Sand and topographic homogenization decreased diversity, but when a drought occurred in year two, the effect was suppressed in the sand treatment and magnified in the pit plots. Microedges had properties unique from adjacent patches. Overall, variability in heterogeneity–diversity relationships was affected by interactions with plant growth patterns and environmental conditions. Our results indicate that while the addition of contrasting soil microsites has the potential to promote increased diversity in grassland restoration on former cropland, the patch components and design must be optimized to achieve this management goal.  相似文献   

9.
AM真菌物种多样性:生态功能、影响因素及维持机制   总被引:1,自引:0,他引:1  
杨海水  熊艳琴  王琪  郭伊  戴亚军  许明敏 《生态学报》2016,36(10):2826-2832
AM真菌物种多样性是土壤生态系统生物多样性的重要组分之一。尽管对AM真菌多样性已有多年研究,但是,已有研究绝大多数仅停留在对AM真菌群落种属解析层面上,对AM真菌物种多样性生态功能及维持机制方面的认识较浅。从生态功能、影响因素及维持机制3个方面系统地综述了近年来AM真菌多样性领域的研究进展。认为AM真菌多样性对植物群落生产力的调控机制及结合理论与实践解析AM真菌多样性维持机制是该领域未来的重点研究方向。  相似文献   

10.
Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently‐wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet‐hedging strategy used by this species.  相似文献   

11.
Yield of the clonal plant Glechoma hederacea was compared at different spatial scales, in heterogeneous and homogeneous environments providing the same amount of nutrients. For the heterogeneous treatments, environments were created with different patch sizes and different degrees of contrast in nutrient concentration between patches of different quality. Total clone yield differed by almost 2.5-fold across treatments, being highest in environments with large patches and high contrast, lowest in environments with small patches and high contrast, and intermediate under homogeneous conditions. Compared with plants in homogeneous conditions, there were significant increases or decreases in yield at all scales of measurement in many of the heterogeneous treatments. These effects on yield reflected a combination of local responses to growing conditions and modification of these responses due to physiological integration with other parts of the plant growing in contrasting conditions, supporting the proposal of de Kroon et al. (2005 New Phytol 166:73–82). The results show that plant yield at all scales is strongly dependent on environmental context, and that maximum yield can only be realized under a limited range of heterogeneous conditions.  相似文献   

12.
Background and AimsThe observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation.MethodsA glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population.Key ResultsParental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins.ConclusionsA diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.  相似文献   

13.
In plants, more favourable environmental conditions can lead to dramatic increases in both mean fitness and variance in fitness. This results in data that violate the equality-of-variance assumption of anova, a problem that most empiricists would address by log-transforming fitness values. Using heuristic data sets and simple simulations, we show that anova on log-transformed fitness consistently fails to match the outcome of selection in a heterogeneous environment or its sensitivity to environmental frequency. Only anova based on relative fitness within environments accurately predicts the sensitivity of genotype selection to the frequency of alternative environments. Parallel analyses of variance based on absolute fitness and relative fitness can bracket the expected success of alternative genotypes under hard and soft selection, respectively. For example, for Sinapis arvensis growing in full sun and partial shade treatments, families achieving high fitness in the best environment are favoured under hard selection, whereas soft selection favours different families that achieve consistently good performance across environments. Based on these findings, we recommend that log-transformation of fitness should no longer be standard practice in ecological genetics studies. Weighted anova is a preferable method for dealing with unequal variances, and investigators should also make greater use of techniques such as quantile regression or resampling to describe and evaluate fitness variation across heterogeneous environments.  相似文献   

14.
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships.  相似文献   

15.
The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population’s response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.  相似文献   

16.
Because leaf pubescence of the desert shrub Encelia farinosa increases in response to drought and influences photosynthesis and transpiration, we hypothesized that differences in water availability across the range of this species may result in genetic differentiation for pubescence and associated productivity traits. We examined maternal family variation of pubescence-moderated light absorption (absorptance) in three populations of E. farinosa. Absorptance was always greatest for plants from the high-rainfall environment and lowest for those from the driest site, but the rate of absorptance change in response to drought was similar among all populations. Similar patterns were found when we compared families within populations-all genotypes had similar initial leaf absorptances, differentiated very early in seasonal growth, then had concordant changes in absorptance thereafter. However, family-level variance was greatest for plants from the driest site, a region with highly heterogeneous precipitation patterns, whereas low variance was found for plants from the wettest, least heterogeneous site. The concordance of leaf absorptance changes, within and among populations, may be due to integration with other drought-related traits; however, the differences in absorptance values within and among populations suggest that variation of leaf pubescence results from selection associated with geographical and local patterns of water availability.  相似文献   

17.
Adaptive genetic differentiation and adaptive phenotypic plasticity can increase the fitness of plant lineages in heterogeneous environments. We examine the relative importance of genetic differentiation and plasticity in determining the fitness of the annual plant, Erodium cicutarium, in a serpentine grassland in California. Previous work demonstrated that the serpentine sites within this mosaic display stronger dispersal‐scale heterogeneity than nonserpentine sites. We conducted a reciprocal transplant experiment among six sites to characterize selection on plasticity expressed by 180 full‐sibling families in response to natural environmental heterogeneity across these sites. Multivariate axes of environmental variation were constructed using a principal components analysis of soil chemistry data collected at every experimental block. Simple linear regressions were used to characterize the intercept, and slope (linear and curvilinear) of reaction norms for each full‐sibling family in response to each axis of environmental variation. Multiple linear regression analyses revealed significant selection on trait means and slopes of reaction norms. Multivariate analyses of variance demonstrated genetic differentiation between serpentine and nonserpentine lineages in the expression of plasticity in response to three of the five axes of environmental variation considered. In all but one case, serpentine genotypes expressed a stronger adaptive plastic response than nonserpentine genotypes.  相似文献   

18.
Recent meta-analyses and simulation studies have suggested that the relationship between soil resource heterogeneity and plant diversity (heterogeneity–diversity relationship; HDR) may be negative when heterogeneity occurs at small spatial scales. To explore different mechanisms that can explain a negative HDR, we conducted a mesocosm experiment combining a gradient of soil nutrient availability (low, medium, high) and scale of heterogeneity (homogeneous, large-scale heterogeneous, small-scale heterogeneous). The two heterogeneous treatments were created using chessboard combinations of low and high fertility patches, and had the same overall fertility as the homogeneous medium treatment. Soil patches were designed to be relatively larger (156 cm2) and smaller (39 cm2) than plant root extent. We found plant diversity was significantly lower in the small-scale heterogeneous treatment compared to the homogeneous treatment of the same fertility. Additionally, low fertility patches in the small-scale heterogeneous treatment had lower diversity than patches of the same size in the low fertility treatment. Shoot and root biomass were larger in the small-scale heterogeneous treatment than in the homogeneous treatment of the same fertility. Further, we found that soil resource heterogeneity may reduce diversity indirectly by increasing shoot biomass, thereby enhancing asymmetric competition for light resources. When soil resource heterogeneity occurs at small spatial scales it can lower plant diversity by increasing asymmetric competition belowground, since plants with large root systems can forage among patches and exploit soil resources. Additionally, small-scale soil heterogeneity may lower diversity indirectly, through increasing light competition, when nutrient uptake by competitive species increases shoot biomass production.  相似文献   

19.
Recent work incorporating demographic–genetic interactions indicates the importance of population size, gene flow, and selection in influencing local adaptation. This work typically assumes that density‐dependent survival affects individuals equally, but individuals in natural population rarely compete equally. Among‐individual differences in resource use generate stronger competition between more similar phenotypes (frequency‐dependent competition) but it remains unclear how this additional form of selection changes the interactions between population size, gene flow, and local stabilizing selection. Here, we integrate migration–selection dynamics with frequency‐dependent competition. We developed a coupled demographic‐quantitative genetic model consisting of two patches connected by dispersal and subject to local stabilizing selection and competition. Our model shows that frequency‐dependent competition slightly increases local adaptation, greatly increases genetic variance within patches, and reduces the amount that migration depresses population size, despite the increased genetic variance load. The effects of frequency‐dependence depend on the strength of divergent selection, trait heritability, and when mortality occurs in the life cycle in relation to migration and reproduction. Essentially, frequency‐dependent competition reduces the density‐dependent interactions between migrants and residents, the extent to which depends on how different and common immigrants are compared to residents. Our results add new dynamics that illustrate how competition can alter the effects of gene flow and divergent selection on local adaptation and population carrying capacities.  相似文献   

20.
Numerous recent studies have tested the effects of plant, pollinator, and predator diversity on primary productivity, pollination, and consumption, respectively. Many have shown a positive relationship, particularly in controlled experiments, but variability in results has emphasized the context-dependency of these relationships. Complementary resource use may lead to a positive relationship between diversity and these processes, but only when a diverse array of niches is available to be partitioned among species. Therefore, the slope of the diversity-function relationship may change across differing levels of heterogeneity, but empirical evaluations of this pattern are lacking. Here we examine three important functions/properties in different real world (i.e., nonexperimental) ecosystems: plant biomass in German grasslands, parasitism rates across five habitat types in coastal Ecuador, and coffee pollination in agroforestry systems in Indonesia. We use general linear and structural equation modeling to demonstrate that the effect of diversity on these processes is context dependent, such that the slope of this relationship increases in environments where limiting resources (soil nutrients, host insects, and coffee flowers, respectively) are spatially heterogeneous. These real world patterns, combined with previous experiments, suggest that biodiversity may have its greatest impact on the functioning of diverse, naturally heterogeneous ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号