首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

2.
Subterranean termites provide a major potential food source for forest-dwelling ants, yet the interactions between ants and termites are seldom investigated largely due to the cryptic nature of both the predator and the prey. We used protein marking (rabbit immunoglobin protein, IgG) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to examine the trophic interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar). We marked the prey by feeding the termites paper treated with a solution of rabbit immunoglobin protein (IgG). Subsequently, we offered live, IgG-fed termites to ant colonies and monitored the intracolony distribution of IgG-marked prey. Laboratory experiments on the distribution of protein-marked termite prey in colonies of A. rudis revealed that all castes and developmental stages receive termite prey within 24 h. In field experiments, live, protein-marked termites were offered to foraging ants. Following predation, the marker was recovered from the ants, demonstrating that A. rudis preys on R. flavipes under field conditions. Our results provide a unique picture of the trophic-level interactions between predatory ants and subterranean termites. Furthermore, we show that protein markers are highly suitable to track trophic interactions between predators and prey, especially when observing elusive animals with cryptic food-web ecology. Received 19 January 2007; revised 23 March 2007; accepted 26 March 2007.  相似文献   

3.
Scout ants of the obligate termite predator, Megaponera foetens, respond to cues in fresh soil sheeting laid down by foraging termites by returning to their nests laying a recruitment trail. Effective cues are found in the sheeting of Macrotermes and Odontotermes, but not Microtermes and Ancistrotermes. They can be extracted using organic solvent, but have disappeared from the sheeting after about. 24 h. Solvent extracts of minor worker termites have the same effect on scout ants as fresh sheeting. The ability of M. foetens to detect fresh soil sheeting may increase the efficiency of predation on Macrotermes and Odontotermes species.  相似文献   

4.
Weaver ants (Oecophylla spp.) are managed in plantations to control insect pests and are sometimes harvested as a protein‐rich food source. In both cases, the amount of insect prey caught by the ants is imperative for returns, as more prey leads to more effective biocontrol and to a higher production of ants. Malaise‐like traps placed in trees may catch flying insects without catching ants, as ants may use pheromone trails to navigate in and out of the traps. Thus, ants may increase their prey intake if they are able to extract insects caught in traps. In a mango plantation in Tanzania, we estimated the amount of insects caught by simple traps (cost per trap = 3.9 USD), and whether Oecophylla longinoda was able to collect insects from them. On average, a trap caught 110 insects per month without catching any weaver ants. The number of insects found in traps with ant access was 25% lower than in control traps (ants excluded), showing that ants were able to gather prey from the traps. Ant activity in traps increased over time, showing that prey extraction efficiency may increase as ants customize to the traps. The prey removed from traps by ants constituted 5% of the number of prey items collected by O. longinoda under natural conditions (without traps), potentially increasing to 14% if ants learn to extract all insects. Thus, prey intake may be increased with 5–14% per 3.9 USD invested in traps. These numbers increased to 38 and 78%, respectively, when light was used to attract insects during night time. Combining ant predation with insect trapping is a new approach potentially building increased returns to ant biocontrol and to ant entomophagy.  相似文献   

5.
Paltothyreus tarsatus workers show an adaptive predatory strategy compatible with central place theory which predicts that single-prey loading is an extension of the optimal diet choice while multiple-prey loading behavior would correspond to the optimal use of patches. The insight learning involved in the quick modifications of predatory strategy enablesP. tarsatus to hunt all available prey in a great diversity of sizes and species. Nevertheless, this generalist predator strongly preferred termites and very large prey such as giant diplopods and crickets to other choices within its diet. In the hunting of these favorite prey, the recruitment of nestmates enhanced the efficiency of total predation, though the release of a chemical trail appeared to depend on the hunger-satiety balance of the colony. In addition to the hunger, the miscapture of prey also triggered the release of chemical trails. The strategy for capturing grouped termites was characterized by the loading of multiple prey at a single time, by a concentrated search in a restricted area and by an optional recruitment of nestmates. These behavioral characteristics of ponerine ants probably account for the flexibility of their predatory strategy for hunting aggregated small prey.  相似文献   

6.
Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.  相似文献   

7.
Invasive ants threaten biodiversity, ecosystem services and agricultural systems. This study evaluated a prey‐baiting approach for managing Argentine ants in natural habitat invaded by Argentine ants. Blackmound termites (Amitermes hastatus) were topically exposed to fipronil and presented to Argentine ants (Linepithema humile). In laboratory assays, L. humile colonies were offered fipronil‐treated termites within experimental arenas. The termites were readily consumed, and results demonstrate that a single termite topically treated with 590 ng fipronil is capable of killing at least 500 L. humile workers in 4 days. Field studies were conducted in natural areas invaded by L. humile. Fipronil‐treated termites scattered within experimental plots provided rapid control of L. humile and ant densities throughout the treated plots declined by 98 ± 5% within 21 days. Results demonstrate that the prey‐baiting approach is highly effective against L. humile and may offer an effective alternative to traditional bait treatments. Furthermore, prey‐baiting offers environmental benefits by delivering substantially less toxicant to the environment relative to current control methods which rely on commercial bait formulations and may offer greater target specificity.  相似文献   

8.
Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.  相似文献   

9.
Abstract 1. Predators can affect prey directly by reducing prey abundance and indirectly by altering behavioural patterns of prey. From previous studies, there is little evidence that ant community structure is affected by vertebrate predation. 2. Researchers tend to consider the interactions between vertebrate predators and ants to be weak. The present study examined the impact of the exotic invasive lizard, Anolis sagrei, on the ant community structure by manipulating the density of lizards within enclosures. The natural density of A. sagrei in the field was surveyed and used as the stocking density rate in the lizard‐present sub‐enclosures. 3. Before the lizard density was manipulated, there was no difference in the ant diversity between sub‐enclosures. After the lizard density manipulation, the ant diversity in sub‐enclosures with A. sagrei present was significantly different from that of enclosures where the lizards were absent, although the overall ant abundance did not differ significantly. 4. The ant diversity difference was generated by a significant reduction of the ant species Pheidole fervens in sub‐enclosures with A. sagrei present. Such an abundance change might be the result of direct predation by the lizards, or it might be generated by a foraging site shift by this ant. 5. The results of this study thus demonstrated that the invasion of an exotic vertebrate can significantly alter the community structure of ants, perhaps through the combined direct and indirect effects of lizards on ants.  相似文献   

10.
Several populations of chimpanzees have been reported to prey upon Dorylus army ants. The most common tool‐using technique to gather these ants is with “dipping” probes, which vary in length with regard to aggressiveness and lifestyle of the prey species. We report the use of a tool set in army ant predation by chimpanzees in the Goualougo Triangle, Republic of Congo. We recovered 1,060 tools used in this context and collected 25 video recordings of chimpanzee tool‐using behavior at ant nests. Two different types of tools were distinguished based on their form and function. The chimpanzees use a woody sapling to perforate the ant nest, and then a herb stem as a dipping tool to harvest the ants. All of the species of ants preyed upon in Goualougo are present and consumed by chimpanzees at other sites, but there are no other reports of such a regular or widespread use of more than one type of tool to prey upon Dorylus ants. Furthermore, this tool set differs from other types of tool combinations used by chimpanzees at this site for preying upon termites or gathering honey. Therefore, we conclude that these chimpanzees have developed a specialized method for preying upon army ants, which involves the use of an additional tool for opening nests. Further research is needed to determine which specific ecological and social factors may have shaped the emergence and maintenance of this technology. Am. J. Primatol. 72:17–24, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Eavesdropping has evolved in many predator–prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate‐borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants‐walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator–prey relationships.  相似文献   

12.
F. Ito 《Insectes Sociaux》1993,40(2):163-167
Summary Group recruitment during foraging was observed in a primitive ponerine ant,Amblyopone sp. (reclinata group) under laboratory condition. Workers searched for prey singly; however, if a item of prey was stung by a worker, other ants joined the attack. After the prey became immobile, one of the workers laid a trail directly toward the nest. This scout worker recruited additional workers (between 3 and 33). They formed a single file procession to the point of prey capture, and cooperatively transported the prey. A scout worker could stimulate nest workers to leave the nest without direct contact, and the recruited workers could trace the trail without guidance by the scout worker. This is the first report of recruitment behavior during foraging in the primitive antAmblyopone.  相似文献   

13.
14.
Invasive ant species have general diet and nest requirements, which facilitate their establishment in novel habitats and their dominance over many native ants. The Asian needle ant, Pachycondyla chinensis, native throughout Australasia was introduced to the southeastern US where it has become established in woodland habitats, nests in close proximity to and consumes subterranean termites (Rhinotermitidae). P. chinensis do not occur in habitats lacking Rhinotermitidae. We suggest that subterranean termites are critical for P. chinensis success in new habitats. We demonstrate that P. chinensis is a general termite feeder, retrieving Reticulitermes virginicus five times more often than other potential prey near P. chinensis colonies. Odors produced by R. virginicus workers, as well as other potential prey, attract P. chinensis. Furthermore, P. chinensis occupy R. virginicus nests in the lab and field and display behaviors that facilitate capture of R. virginicus workers and soldiers. Termites are an abundant, high quality, renewable food supply, in many ways similar to the hemipteran honeydew exploited by most other invasive ant species. We conclude that the behavior of P. chinensis in the presence of termites increases their competitive abilities in natural areas where they have been introduced.  相似文献   

15.
Redford  Kent H. 《Oecologia》1984,65(1):145-152
Summary A laboratory study of mammalian predation on termites was conducted using the burrowing mouse (Oxymycterus roberti) and eight species of central Brazilian termites. The results of preference trials demonstrate that Oxymycterus discriminate between termite species and that the eight prey species fall into three groups: least preferred, most-preferred and a group of intermediate preference.Preferences of Oxymycterus are not explained by the size or the nutritional quality of the termite species. However, three measures of termite soldier-based defense do correlate highly with preference. Termite species with soldiers exhibiting a mechanical or mixed defense are greatly preferred by Oxymycterus over species with soldiers exhibiting a chemical based defense. This chemical defense by termites is effective in severely limiting predation by small mammals.  相似文献   

16.
The prey species composition and feeding rate of the pit-making ant lion larva,Myrmeleon bore Tjeder, which inhabits open sandy areas, were examined. Not less than 30 prey species, most of which were ants, were collected during a research period of 1.5 years. First instar larvae most often (81.1%) captured ants. Although 3rd instar larvae captured larger-sized prey than individuals of any other instar, they also captured small prey. The feeding rate of 3rd instar larvae was estimated by using the frequency of observed predation (FOP; (no. of ant lions handling a prey)/(total no. of pits observed)), the prey-handling time and the rhythm of daily foraging activity. FOP ofM. bore larvae was constant on the whole from spring to autumn. It was estimated that each captured 1.25 prey per day on average during this period. This estimate, however, was the feeding rate for days on which there was no rain. Assuming that the larvae cannot capture prey due to pit destruction when there is more than 10 mm of rainfall per day, the figure was reduced to 1.03 prey/day. The estimated feeding rate was evaluated with reference to larval foraging behavior.  相似文献   

17.
Abstract Relative abundance is one factor that influences selection of prey by insectivorous mammals and lizards. Ants and termites are extremely abundant over most of inland Australia. Their patterns of abundance are also broadly similar across climatic gradients, being most and least abundant in seasonally arid (tropic and sub-tropic) and temperate mesic regions, respectively. All else being equal (e. g. mechanisms of prey defence, palat-ability, availability), animals that eat many termites should also eat many (adult) ants. The present study asks three questions: (i) What is the diversity of specialized ant-eaters (>50% volume)?; (ii) Does specialization vary with climate?; and (iii) Are ants and termites eaten in broadly similar proportions (using an earlier study on termites). Of the mammals, only the echidna (Tachyglossus aculeatus) in mesic regions, and probably the marsupial mole (Notoryctes typhlops) in the arid zone and the striped possum (Dactylopsila trivirgata) in mesic regions are ant-specialized. Ant-specialization in mammals shows no pattern with regard to climate. Of the lizards, only four agamid lizards are ant-specialized: Moloch horridus (arid, semi-arid), Ctenophorus fordi (arid, semi-arid), Ctenophorus isolepis (arid) and Ctenophorus maculatus (arid). Specialization on ants by lizards is greatest in the arid zone (4 spp.); no lizard species were found to be ant-specialists in mesic regions. In the arid and semi-arid zone, two mammals each specialize on termites and one on ants; in mesic regions, two mammals specialize on ants and one on termites. Specialized insectivorous mammals thus demonstrate no marked preference for either termites or ants. Lizards, in contrast, are markedly termite-specialized (4 ant-specialist spp., 16 termite-specialist spp.), and specialization is greatest in the arid zone (16 spp.). Greater specialization on termites than on (adult) ants in lizards is explained with reference to differences in prey defence and palatability between ants and termites. Consumption of ant brood (eggs, larvae, pupae) appears to be associated with a fossorial foraging mode (the marsupial mole N. typhlops; spp. of Aprasia lizards; spp. of blindsnakes Ramphotyphlops).  相似文献   

18.
Abstract 1. We monitored three different‐sized wood ant (Formica aquilonia Yarrow) mounds over a 3‐year period in Finnish boreal forests dominated by Norway spruce (Picea abies Karst.), to assess the seasonal temperature dependency of ant activity. Additionally, we also monitored Norway spruce trees around the mounds for descending honeydew foragers. 2. The amount of collected honeydew and prey and its composition, as well as the carbon (C), nitrogen (N), and phosphorus (P) in honeydew and invertebrate prey was also investigated. 3. The number of warm days (average temperature above 20 °C) and the amount of precipitation differed among the years. Ant activity at the mounds (but not on the trees) was highly correlated with air temperature throughout the ant‐active season (May–September), but ant activity in spring and autumn was lower than in summer at similar temperatures. During all 3 years, honeydew played a major role in wood ant nutrition (78–92% of dry mass). Invertebrate prey was mainly Diptera (on average 26.2%), Coleoptera (12.5%), Aphidina (9.3%), and Arachnoida (8.5%). 4. The total amounts of C, N, and P input brought into the ant mounds in the form of food (both honeydew and prey) on the stand level were 12.6–39.0, 1.6–4.6 and 0.1–0.4 kg ha?1 year?1, respectively, which is equivalent to 2–6%, 12–33% and 27–58% of the fluxes in annual needle litterfall in typical boreal Norway spruce forests. Thus, wood ants can play a significant role in short term and local N and P cycling of boreal forest ecosystems.  相似文献   

19.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

20.
Some aphid species are attended by ants, which protect aphids against enemies, but ants sometimes prey on the aphids they are attending depending on the resource conditions. A previous study indicated that the ant Lasius niger preys less on the aphid individuals that experienced ant attendance than on those that did not. This observation leads to the hypothesis that ants transfer some substances to the aphids they attend and selectively prey on the aphids without the substances. In this study, we focus on cuticular hydrocarbons (CHCs), which are used by ants as nestmate recognition substances, and test whether ants discriminate the aphids on the basis of CHCs. We confirmed that the ant Lasius fuji preyed less on the aphids that were attended by their nestmates than those that were not attended. Glass dummies treated with CHCs from attended aphids were attacked less by ants than those treated with CHCs from non-attended aphids. The CHC profiles of ant attended aphids resembled those of the ants, suggesting that ants’ CHCs are transferred to the aphids’ body surface through ant attendance. These results support the hypothesis that ants “mark” their attended aphids with their CHCs and the CHCs reduce ant predation intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号