首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Regulation of Notch signaling is critical to development and maintenance of most eukaryotic organisms. The Notch receptors and ligands are integral membrane proteins and direct cell-cell interactions are needed to activate signaling. Ligand-expressing cells activate Notch signaling through an unusual mechanism involving Notch proteolysis to release the intracellular domain from the membrane, allowing the Notch receptor to function directly as the downstream signal transducer. In the absence of ligand, the Notch receptor is maintained in an autoinhibited, protease resistant state. Genetic studies suggest that Notch ligands require ubiquitylation, epsin endocytic adaptors and dynamin-dependent endocytosis for signaling activity. Here we discuss potential models and supporting evidence to account for the absolute requirement for ligand endocytosis to activate signaling in Notch cells. Specifically, we focus on a role for ligand-mediated endocytic force to unfold Notch, override the autoinhibited state, and activate proteolysis to direct Notch-specific cellular responses.  相似文献   

2.
3.
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation—a post-translational modification involving literal sugars—on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.  相似文献   

4.
5.
The Notch pathway is an evolutionarily conserved signaling mechanism that is essential for cell-cell interactions. The Drosophila deltex gene regulates Notch signaling in a positive manner, and its gene product physically interacts with the intracellular domain of Notch through its N-terminal domain. Deltex has two other domains that are presumably involved in protein-protein interactions: a proline-rich motif that binds to SH3-domains, and a RING-H2 finger motif. Using an overexpression assay, we have analyzed the functional involvement of these Deltex domains in Notch signaling. The N-terminal domain of Deltex that binds to the CDC10/Ankyrin repeats of the Notch intracellular domain was indispensable for the function of Deltex. A mutant form of Deltex that lacked the proline-rich motif behaved as a dominant-negative form. This dominant-negative Deltex inhibited Notch signaling upstream of an activated, nuclear form of Notch and downstream of full-length Notch, suggesting the dominant-negative Deltex might prevent the activation of the Notch receptor. We found that Deltex formed a homo-multimer, and mutations in the RING-H2 finger domain abolished this oligomerization. The same mutations in the RING-H2 finger motif of Deltex disrupted the function of Deltex in vivo. However, when the same mutant was fused to a heterologous dimerization domain (Glutathione-S-Transferase), the chimeric protein had normal Deltex activity. Therefore, oligomerization mediated by the RING-H2 finger motif is an integral step in the signaling function of Deltex.  相似文献   

6.
Notch1 plays a critical role in regulating T lineage commitment during the differentiation of lymphoid precursors. The physiological relevance of Notch1 signaling during subsequent stages of T cell differentiation has been more controversial. This is due in part to conflicting data from studies examining the overexpression or targeted deletion of Notch1 and to difficulties in distinguishing between the activities of multiple Notch family members and their ligands, which are expressed in the thymus. We employed a polyclonal antiserum against the extracellular domain of Notch1 to study surface expression during thymopoiesis. We found high levels of Notch1 on the cell surface only on double negative (DN) stage 2 through the immature single-positive stage of thymocyte development, before the double-positive (DP) stage. The Notch signaling pathway, as read out by Deltex1 expression levels, is highly active in DN thymocytes. When an active Notch1 transgene, Notch1IC, is exogenously introduced into thymocytes of recombinase-activating gene 2-deficient mice, it promotes proliferation and development to the DP stage following anti-CD3 treatment without apparently affecting the intensity of pre-TCR signaling. In addition, a stromal cell line expressing the Notch ligand, Delta-like-1, promotes the in vitro expansion of wild-type DN3 thymocytes in vitro. Consistent with other recent reports, these data suggest a role for Notch1 during the DN to DP stage of thymocyte maturation and suggest a cellular mechanism by which Notch1IC oncogenes could contribute to thymoma development and maintenance.  相似文献   

7.
8.
9.
Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10 and members of the Notch pathway such as Delta1, Hes5 and Lunatic Fringe. The complementary non-neural domain expressed two patterning genes, Lmx1b and Iroquois1, and the members of the Notch pathway, Serrate1 and Hairy1. Fate map studies and double injections with DiI/DiO showed that labeled cells remained confined to anterior or posterior territories with limited cell intermingling. To explore whether Notch signaling pathway plays a role in the initial regionalization of the otic placode, Notch activity was blocked by a gamma-secretase inhibitor (DAPT). Notch blockade induced the expansion of non-neural genes, Lmx1 and Iroquois1, into the proneural domain. Combined gene expression and DiI experiments showed that these effects were not due to migration of non-neural cells into the proneural domain, suggesting that Notch activity regulates the expression of non-neural genes. This was further confirmed by the electroporation of a dominant-negative form of the Mastermind-like1 gene that caused the up-regulation of Lmx1 within the proneural domain. In addition, Notch pathway was involved in neuronal precursor selection, probably by a classical mechanism of lateral inhibition. We propose that the regionalization of the otic domain into a proneural and a non-neural territory is a very early event in otic development, and that Notch signaling activity is required to exclude the expression of non-neural genes from the proneural territory.  相似文献   

10.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.  相似文献   

11.
12.
13.
14.
15.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.  相似文献   

16.
17.
Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.  相似文献   

18.
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.  相似文献   

19.
Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号