首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duret L  Arndt PF 《PLoS genetics》2008,4(5):e1000071
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2=47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp.  相似文献   

2.
To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly understood. Addressing this issue, we study a two-locus Wright-Fisher model of a population subject to recurrent bottlenecks. We derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that an effective population-size approximation describes the numerically observed association between two loci provided that recombination occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, σ(2)(d) (closely related to r(2)), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines.  相似文献   

3.
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue in the identification of functional sequence features. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We have analyzed the pattern of neutral substitutions in 14.3 Mb of primate noncoding regions. We show that the GC-content toward which sequences are evolving is strongly correlated (r(2) = 0.61, P 相似文献   

4.
Ptak SE  Voelpel K  Przeworski M 《Genetics》2004,167(1):387-397
An ability to predict levels of linkage disequilibrium (LD) between linked markers would facilitate the design of association studies and help to distinguish between evolutionary models. Unfortunately, levels of LD depend crucially on the rate of recombination, a parameter that is difficult to measure. In humans, rates of genetic exchange between markers megabases apart can be estimated from a comparison of genetic and physical maps; these large-scale estimates can then be interpolated to predict LD at smaller ("local") scales. However, if there is extensive small-scale heterogeneity, as has been recently proposed, local rates of recombination could differ substantially from those averaged over much larger distances. We test this hypothesis by estimating local recombination rates indirectly from patterns of LD in 84 genomic regions surveyed by the SeattleSNPs project in a sample of individuals of European descent and of African-Americans. We find that LD-based estimates are significantly positively correlated with map-based estimates. This implies that large-scale, average rates are informative about local rates of recombination. Conversely, although LD-based estimates are based on a number of simplifying assumptions, it appears that they capture considerable information about the underlying recombination rate or at least about the ordering of regions by recombination rate. Using LD-based estimators, we also find evidence for homologous gene conversion in patterns of polymorphism. However, as we demonstrate by simulation, inferences about gene conversion are unreliable, even with extensive data from homogeneous regions of the genome, and are confounded by genotyping error.  相似文献   

5.
A range of indicators have been proposed for identifying the elevated risk of critical transitions in ecosystems. Most indicators are based on the idea that critical slowing down can be inferred from changes in statistical properties of natural fluctuations and spatial patterns. However, identifying these signals in nature has remained challenging. An alternative approach is to infer changes in resilience from differences in standardized experimental perturbations. However, system-wide experimental perturbations are rarely feasible. Here we evaluate the potential to infer the risk of large-scale systemic transitions from local experimental or natural perturbations. We use models of spatially explicit landscapes to illustrate how recovery rates upon small-scale perturbations decrease as an ecosystem approaches a tipping point for a large-scale collapse. We show that the recovery trajectory depends on: (1) the resilience of the ecosystem at large scale, (2) the dispersal rate of organisms, and (3) the scale of the perturbation. In addition, we show that recovery of natural disturbances in a heterogeneous environment can potentially function as an indicator of resilience of a large-scale ecosystem. Our analyses reveal fundamental differences between large-scale weak and local-scale strong perturbations, leading to an overview of opportunities and limitations of the use of local disturbance-recovery experiments.  相似文献   

6.
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.  相似文献   

7.
We are interested in how intragenic recombination contributes to the evolution of proteins and how this mechanism complements and enhances the diversity generated by random mutation. Experiments have revealed that proteins are highly tolerant to recombination with homologous sequences (mutation by recombination is conservative); more surprisingly, they have also shown that homologous sequence fragments make largely additive contributions to biophysical properties such as stability. Here, we develop a random field model to describe the statistical features of the subset of protein space accessible by recombination, which we refer to as the recombinational landscape. This model shows quantitative agreement with experimental results compiled from eight libraries of proteins that were generated by recombining gene fragments from homologous proteins. The model reveals a recombinational landscape that is highly enriched in functional sequences, with properties dominated by a large-scale additive structure. It also quantifies the relative contributions of parent sequence identity, crossover locations, and protein fold to the tolerance of proteins to recombination. Intragenic recombination explores a unique subset of sequence space that promotes rapid molecular diversification and functional adaptation.  相似文献   

8.
DNA sequences of alleles at the merozoite surface antigen-1 (MSA-1) gene locus of the malaria parasite Plasmodium falciparum show evidence of repeated past recombination events between alleles. These include both (1) nonreciprocal recombination events that have homogenized certain gene regions among alleles and (2) reciprocal recombination events that have combined allelic segments with divergent evolutionary histories, thereby enhancing allelic diversity. In three different gene regions, the rate of nonsynonymous nucleotide substitution significantly exceeds that of synonymous nucleotide substitution, implying that positive Darwinian selection has acted to diversify alleles at the amino acid level. The MSA-1 polymorphism seems to be quite ancient; the two major allelic types have been maintained for approximately 35 Myr.  相似文献   

9.
There has been considerable recent interest in understanding the way in which recombination rates vary over small physical distances, and the extent of recombination hotspots, in various genomes. Here we adapt, apply, and assess the power of recently developed coalescent-based approaches to estimating recombination rates from sequence polymorphism data. We apply full-likelihood estimation to study rate variation in and around a well-characterized recombination hotspot in humans, in the beta-globin gene cluster, and show that it provides similar estimates, consistent with those from sperm studies, from two populations deliberately chosen to have different demographic and selectional histories. We also demonstrate how approximate-likelihood methods can be used to detect local recombination hotspots from genomic-scale SNP data. In a simulation study based on 80 100-kb regions, these methods detect 43 out of 60 hotspots (ranging from 1 to 2 kb in size), with only two false positives out of 2000 subregions that were tested for the presence of a hotspot. Our study suggests that new computational tools for sophisticated analysis of population diversity data are valuable for hotspot detection and fine-scale mapping of local recombination rates.  相似文献   

10.
The goal of this study is to develop a unifying theoretical framework to quantify the strength of reproductive isolation. We propose the use of the "effective recombination rate," which measures how fast associations of genes are broken by interlocus recombination. Applying the well-established theory of the effective migration rate, we derive two techniques to investigate the effective recombination rate in models of speciation: the weak migration approximation for parapatric scenarios and the weak recombination approximation for sympatric scenarios. We illustrate the use of these two methods by two examples each: (1) single-locus genetic incompatibility and (2) two-locus genetic incompatibility for the first method, and (3) assortative mating and (4) assortative mating combined with disruptive selection for the second method. An advantage of the effective recombination rate over previous approaches is that it integrates gene flow in both directions into a single index measuring the strength of isolation. This enables straightforward comparisons of speciation scenarios with the same or different geographic histories. The method also allows us to evaluate the relative contributions of F2 hybrid deficiency or linkage between multiple barriers in reproductive isolation.  相似文献   

11.
Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that “priming” and “epigenetic learning” may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.  相似文献   

12.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

13.
A study is made of the influence of large-scale plasma turbulence on the results from a diagnostic method that is based on enhanced scattering of microwaves near the upper hybrid resonance and is highly sensitive to small-scale fluctuations. The resolution in radial wavenumbers that is provided by an enhanced-scattering correlation analysis of small-scale fluctuations with allowance for multiple small-angle scatterings of the probing and scattered waves along their paths is determined. The frequency spectrum of a wave that is backscattered by the small-scale fluctuations involved in large-scale turbulent motion and undergoes multiple smallangle scatterings is analyzed.  相似文献   

14.
Understanding the pattern of linkage disequilibrium (LD) in the human genome is important both for successful implementation of disease-gene mapping approaches and for inferences about human demographic histories. Previous studies have examined LD between loci within single genes or confined genomic regions, which may not be representative of the genome; between loci separated by large distances, where little LD is seen; or in population groups that differ from one study to the next. We measured LD in a large set of locus pairs distributed throughout the genome, with loci within each pair separated by short distances (average 124 bp). Given current models of the history of the human population, nearly all pairs of loci at such short distances would be expected to show complete LD as a consequence of lack of recombination in the short interval. Contrary to this expectation, a significant fraction of pairs showed incomplete LD. A standard model of recombination applied to these data leads to an estimate of effective human population size of 110,000. This estimate is an order of magnitude higher than most estimates based on nucleotide diversity. The most likely explanation of this discrepancy is that gene conversion increases the apparent rate of recombination between nearby loci.  相似文献   

15.
The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.  相似文献   

16.
The susceptibility to recombination of a plasmid inserted into a chromosome varies with its genomic position. This recombination position effect is known to correlate with the average G+C content of the flanking sequences. Here we propose that this effect could be mediated by changes in the susceptibility to superhelical duplex destabilization that would occur. We use standard nonparametric statistical tests, regression analysis and principal component analysis to identify statistically significant differences in the destabilization profiles calculated for the plasmid in different contexts, and correlate the results with their measured recombination rates. We show that the flanking sequences significantly affect the free energy of denaturation at specific sites interior to the plasmid. These changes correlate well with experimentally measured variations of the recombination rates within the plasmid. This correlation of recombination rate with superhelical destabilization properties of the inserted plasmid DNA is stronger than that with average G+C content of the flanking sequences. This model suggests a possible mechanism by which flanking sequence base composition, which is not itself a context-dependent attribute, can affect recombination rates at positions within the plasmid.  相似文献   

17.
Experiments in recent years have vividly demonstrated that gene expression can be highly stochastic. How protein concentration fluctuations affect the growth rate of a population of cells is, however, a wide-open question. We present a mathematical model that makes it possible to quantify the effect of protein concentration fluctuations on the growth rate of a population of genetically identical cells. The model predicts that the population's growth rate depends on how the growth rate of a single cell varies with protein concentration, the variance of the protein concentration fluctuations, and the correlation time of these fluctuations. The model also predicts that when the average concentration of a protein is close to the value that maximizes the growth rate, fluctuations in its concentration always reduce the growth rate. However, when the average protein concentration deviates sufficiently from the optimal level, fluctuations can enhance the growth rate of the population, even when the growth rate of a cell depends linearly on the protein concentration. The model also shows that the ensemble or population average of a quantity, such as the average protein expression level or its variance, is in general not equal to its time average as obtained from tracing a single cell and its descendants. We apply our model to perform a cost-benefit analysis of gene regulatory control. Our analysis predicts that the optimal expression level of a gene regulatory protein is determined by the trade-off between the cost of synthesizing the regulatory protein and the benefit of minimizing the fluctuations in the expression of its target gene. We discuss possible experiments that could test our predictions.  相似文献   

18.
Many researchers assume that until 10–12,000 years ago, humans lived in small, mobile, relatively egalitarian bands. This “nomadic-egalitarian model” suffuses the social sciences. It informs evolutionary explanations of behavior and our understanding of how contemporary societies differ from those of our evolutionary past. Here, we synthesize research challenging this model and articulate an alternative, the diverse histories model, to replace it. We review the limitations of using recent foragers as models of Late Pleistocene societies and the considerable social variation among foragers commonly considered small-scale, mobile, and egalitarian. We review ethnographic and archaeological findings covering 34 world regions showing that non-agricultural peoples often live in groups that are more sedentary, unequal, large, politically stratified, and capable of large-scale cooperation and resource management than is normally assumed. These characteristics are not restricted to extant Holocene hunter-gatherers but, as suggested by archaeological findings from 27 Middle Stone Age sites, likely characterized societies throughout the Late Pleistocene (until c. 130 ka), if not earlier. These findings have implications for how we understand human psychological adaptations and the broad trajectory of human history.  相似文献   

19.
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.  相似文献   

20.
Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family''s evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号