首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basic muscle protein,a third genetic locus isoenzyme of carbonic anhydrase?   总被引:4,自引:0,他引:4  
Rabbit muscle cytosol extract contains a basic protein which represents about 2% of the total cytosol protein. It contains zinc in a 1:1 stoichiometric ratio, based on a molecular weight of 30,000, and it catalyzes the hydration of CO2. It is immunochemically distinct from the high and low activity forms of rabbit blood carbonic anhydrase. It has comparatively poor activity as an esterase, and about 20% of the CO2 hydratase activity of the rabbit blood low activity carbonic anhydrase. This CO2 hydratase activity is not inhibited by acetazolamide at concentrations which totally inhibit the activity of the blood carbonic anhydrases. The evidence obtained to date, though circumstantial, suggests that this basic metalloprotein is a carbonic anhydrase derived from a third genetic locus with properties considerably different from those of the mammalian carbonic anhydrases heretofore identified.  相似文献   

2.
Pig muscle carbonic anhydrase III (carbonate hydro-lyase, EC 4.2.1.1) has been isolated and purified to homogeneity with chromatographic techniques. It has been found to be a 30 kDa protein displaying the same three activities (CO2 hydratase, acetate esterase, p-nitrophenyl phosphatase) previously described for the rabbit muscle isoenzyme, including the phosphatase activity not seen in the erythrocyte isoenzymes. The turnover numbers of the three activities are of the same order of magnitude as previously reported for rabbit muscle carbonic anhydrase III. Km and Vmax for the pig muscle CO2 hydratase activity were found to be 83 mM and 6000 s-1, respectively. The extinction coefficient at 280 nm (1 cm light path) is 22.2 for a 1% solution. Five half-cystine residues determined by performic acid oxidation are free for reaction with p-mercuribenzoate but only four are accessible to titration with dithiobisnitrobenzene. The amino acid composition of the pig muscle isoenzyme III has a high level of homology compared with that of rabbit and bovine muscle carbonic anhydrases III.  相似文献   

3.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

4.
The carbonic anhydrases reversibly hydrate carbon dioxide to yield bicarbonate and hydrogen ion. They have a variety of physiological functions, although the specific roles of each of the 10 known isozymes are unclear. Carbonic anhydrase isozyme III is particularly rich in skeletal muscle and adipocytes, and it is unique among the isozymes in also exhibiting phosphatase activity. Previously published studies provided evidence that the phosphatase activity was intrinsic to carbonic anhydrase III, that it had specificity for tyrosine phosphate, and that activity was regulated by reversible glutathionylation of cysteine186. To study the mechanism of this phosphatase, we cloned and expressed the rat liver carbonic anhydrase III. The purified recombinant had the same specific activity as the carbonic anhydrase purified from rat liver, but it had virtually no phosphatase activity. We attempted to identify an activator of the phosphatase in rat liver and found a protein of approximately 14 kDa, the amount of which correlated with the phosphatase activity of the carbonic anhydrase III fractions. It was identified as liver fatty acid binding protein, which was then purified to test for activity as an activator of the phosphatase and for protein-protein interaction, but neither binding nor activation could be demonstrated. Immunoprecipitation experiments established that carbonic anhydrase III could be separated from the phosphatase activity. Finally, adding additional purification steps completely separated the phosphatase activity from the carbonic anhydrase activity. We conclude that the phosphatase activity previously considered to be intrinsic to carbonic anhydrase III is actually extrinsic. Thus, this isozyme exhibits only the carbon dioxide hydratase and esterase activities characteristic of the other mammalian isozymes, and the phosphatase previously shown to be activated by glutathionylation is not carbonic anhydrase III.  相似文献   

5.
H.F. Bundy  S. Coté 《Phytochemistry》1980,19(12):2531-2534
Carbonic anhydrase (CA) was purified from the unicellular green alga Chlamydomonas reinhardii, and the purity of the preparation was established by gradient gel electrophoresis. The purified enzyme exhibited a MW of 165 000 and contained 6 atoms of Zn. The subunit MW, as determined by dodecyl sulfate electrophoresis, was 27 000. These results are consistent with a quarternary structure which is hexameric, each monomer containing 1 g atom of Zn. Like spinach CA, and in contrast to other oligomeric plant CAs, a sulfhydryl reducing agent is not needed to stabilize the enzyme. CO2-hydrase activity was inhibited by both acetazolamide (I50 = 7.8 × 10?9M) and sulfanilamide (I50 = 1.3 × 10?5M), as well as by certain inorganic anions. The purified enzyme showed relatively weak esterase activity with p-nitrophenyl acetate but was an extremely effective esterase with 2-hydroxy-5-nitro-α-toluenesulfonic acid sultone as the substrate. Both esterase activities could be completely inhibited by adding acetazolamide. In its gross structural characteristics, the C. reinhardii enzyme resembles the CAs from higher plants. However, in its esterase activity and the inhibition by sulfonamides it is markedly different from plant CAs and bears more resemblance to erythrocyte CAs.  相似文献   

6.
By measuring 18O exchange from doubly labeled CO2 (13C18O18O), intracellular carbonic anhydrase activity was studied with protoplasts and chloroplasts isolated from Chlamydomonas reinhardtii grown either on air (low inorganic carbon [Ci]) or air enriched with 5% CO2 (high Ci). Intact low Ci protoplasts had a 10-fold higher carbonic anhydrase activity than did high Ci protoplasts. Application of dextran-bound inhibitor and quaternary ammonium sulfanilamide, both known as membrane impermeable inhibitors of carbonic anhydrase, had no influence on the catalysis of 18O exchange, indicating that cross-contamination with extracellular carbonic anhydrase was not responsible for the observed activity. This intracellular in vivo activity from protoplasts was inhibited by acetazolamide and ethoxyzolamide. Intracellular carbonic anhydrase activity was partly associated with intact chloroplasts isolated from high and low Ci cells, and the latter had a sixfold greater rate of catalysis. The presence of dextran-bound inhibitor had no effect on chloroplast-associated carbonic anhydrase, whereas 150 micromolar ethoxyzolamide caused a 61 to 67% inhibition of activity. These results indicate that chloroplastic carbonic anhydrase was located within the plastid and that it was relatively insensitive to ethoxyzolamide. Carbonic anhydrase activity in crude homogenates of protoplasts and chloroplasts was about six times higher in the low Ci than in high Ci preparations. Further separation into soluble and insoluble fractions together with inhibitor studies revealed that there are at least two different forms of intracellular carbonic anhydrase. One enzyme, which was rather insoluble and relatively insensitive to ethoxyzolamide, is likely an intrachloroplastic carbonic anhydrase. The second carbonic anhydrase, which was soluble and sensitive to ethoxyzolamide, is most probably located in an extrachloroplastic compartment.  相似文献   

7.
Abstract

Carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) were proposed as potential targets for cancer therapy more than 20 years ago. However, to date, there are only very few antibodies that have been described to specifically target CA9 and CA12 and also block the enzymatic activity of their targets. One of the early stage bottlenecks in identifying CA9- and CA12-inhibiting antibodies has been the lack of a high-throughput screening system that would allow for rapid assessment of inhibition of the targeted carbon dioxide hydratase activity of carbonic anhydrases. In this study, we show that measuring the esterase activity of carbonic anhydrase offers a robust and inexpensive screening method for identifying antibody candidates that block both hydratase and esterase activities of carbonic anhydrase’s. To our knowledge, this is the first implementation of a facile surrogate-screening assay to identify potential therapeutic antibodies that block the clinically relevant hydratase activity of carbonic anhydrases.  相似文献   

8.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

9.
It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3?/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α?carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α?carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3?/CO2. Addition of exogenous HCO3? or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.  相似文献   

10.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

11.
Mammalian carbonic anhydrase III has previously been shown to catalyze the hydrolysis of p-nitrophenyl phosphate in addition to possessing the conventional CO2 hydratase and p-nitrophenylacetate esterase activities. Modification of pig muscle carbonic anhydrase III with the arginine reagent phenylglyoxal yielded two clearly distinctive results. Reaction of the enzyme with phenylglyoxal at concentrations equivalent to those of the enzyme yielded stoichiometric inactivation titration of the enzyme's phosphatase activity, approaching 100% loss of activity with the simultaneous modification of one arginine residue, the latter based on a 1:1 reaction of phenylglyoxal with arginine. At this low ratio of phenylglyoxal to enzyme, neither the CO2 hydratase activity nor the acetate esterase activity was affected. When the modification was performed with a significant excess of phenylglyoxal, CO2 hydratase and acetate esterase activities were diminished as well. That loss of activity was accompanied by the incorporation of an additional half dozen phenylglyoxals and, presumably, the modification of an equal number of arginine residues. The data in their entirety are interpreted to show that the p-nitrophenylphosphatase activity is a unique property of carbonic anhydrase III and that excessive amounts of the arginine-modifying reagent lead to unspecific structural changes of the enzyme as a result of which all of its enzymatic activities are inactivated.  相似文献   

12.
Novel sulfonamide derivatives 6ai, as new carbonic anhydrase inhibitors which candidate for glaucoma treatment, were synthesized from the reactions of 4-amino-N-(4-sulfamoylphenyl) benzamide 4 and sulfonyl chloride derivatives 5ai with high yield (71–90%). The structures of these compounds were confirmed by using spectral analysis (FT-IR, 1H NMR, 13C NMR, LC/MS and HRMS). The inhibition effects of 6ai on the hydratase and esterase activities of human carbonic anhydrase isoenzymes, hCA I and II, which were purified from human erythrocytes with Sepharose®4B-l-tyrosine-p-aminobenzene sulfonamide affinity chromatography, were studied as in vitro, and IC50 and Ki values were determined. The results show that newly synthesized compounds have quite powerful inhibitory properties.  相似文献   

13.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   

14.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

15.
Carbonic anhydrases in plants and algae   总被引:12,自引:1,他引:12  
Carbonic anhydrases catalyse the reversible hydration of CO2, increasing the interconversion between CO2 and HCO3 + H+ in living organisms. The three evolutionarily unrelated families of carbonic anhydrases are designated α-, β-and γ-CA. Animals have only the α-carbonic anhydrase type of carbonic anhydrase, but they contain multiple isoforms of this carbonic anhydrase. In contrast, higher plants, algae and cyanobacteria may contain members of all three CA families. Analysis of the Arabidopsis database reveals at least 14 genes potentially encoding carbonic anhydrases. The database also contains expressed sequence tags (ESTs) with homology to most of these genes. Clearly the number of carbonic anhydrases in plants is much greater than previously thought. Chlamydomonas, a unicellular green alga, is not far behind with five carbonic anhydrases already identified and another in the EST database. In algae, carbonic anhydrases have been found in the mitochondria, the chloroplast thylakoid, the cytoplasm and the periplasmic space. In C3 dicots, only two carbonic anhydrases have been localized, one to the chloroplast stroma and one to the cytoplasm. A challenge for plant scientists is to identify the number, location and physiological roles of the carbonic anhydrases.  相似文献   

16.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

17.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

18.
The prokaryotic algal symbiont of ascidians, Prochloron sp., was found to exhibit carbonic anhydrase activity which is largely associated with the cell surface. This extracellular carbonic anhydrase activity was inhibited, while the intracellular activity was not affected, by chloride or bromide. Acetazolamide and ethoxyzolamide inhibited carbonic anhydrase activity with I50 values of 7×10-4 and 3×10-4M, respectively. These I50 values are similar to those observed for intracellular carbonic anhydrases of Synechococcus sp. PCC7942, Chlamydomonas reinhardii and spinach.Abbreviations AZA acetazolamide - CA carbonic anhydrase - chl chlorophyll - EZA ethozyzolamide - I50 concentration of an inhibitor required to cause 50% inhibition - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - U unit  相似文献   

19.
Carbonic anhydrase (CA) was purified from four different cell localisation (outer peripheral, cytosolic, inner peripheral and integral) in bovine stomach using affinity chromatography with Sepharose-4B-l-tyrosine sulphanilamide. During the purification steps, the activity of the enzyme was measured using p-nitrophenyl acetate at pH 7.4. Optimum pH and optimum temperature values for all CA samples were determined, and their Km and Vmax values for the same substrate by Lineweaver–Burk graphics. The extent of purification for all CA localizations was controlled by SDS-PAGE. The Km values at optimum pH and 20°C were 0.625?mM, 0.541?mM, 0.785?mM and 0.862?mM with p-nitro phenyl acetate, for all CA localizations. The respective Vmax values at optimum pH and 20°C were 0.875?μmol/L?min, 0.186?μmol/L?min, 0.214?μmol/L?min and 0.253?μmol/L?min with the same substrate. The Ki and I50 values for the inhibitors sulphanilamide, KSCN, NaN3 and acetazolamide were determined for all the CA localizations.  相似文献   

20.
The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with a series of phenol derivatives was investigated by using the esterase assay, with 4-nitrophenyl acetate as substrate. 2,6-Dimethylphenol, 2,6-diisopropylphenol (propofol), 2,6-di-t-butylphenol, butylated hydroxytoluene, butylated hydroxyanisole, vanillin, guaiacol, di(2,6-dimethylphenol), di(2,6-diisopropylphenol), di(2,6-di-t-butylphenol), and acetazolamide showed KI values in the range of 37.5–274.5 μM for hCA I and of 0.29–113.5 μM against hCA II, respectively. All these phenols were non-competitive inhibitors with 4-nitrophenylacetate as substrate. Some antioxidant phenol derivatives investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号