首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning.  相似文献   

2.
Geographic variation in species interactions can have major effects on species distributions and can be important for the resistance of resident communities to invasive species. We tested the hypothesis that coexistence or replacement of a resident North American mosquito Aedes aegypti with the invasive Aedes albopictus is affected by interpopulation variation in the inherent competitive ability of A. aegypti and variation in the fecundity–size relationship. We postulated that such variation creates differential population-level outcomes of competition with A. albopictus. We compared competitive abilities of eight North American populations of A. aegypti, four populations sympatric to A. albopictus, and four populations allopatric to A. albopictus. Competition among larvae from each A. aegypti population and a single A. albopictus population was tested in laboratory microcosms in a response-surface design. We found origin of A. aegypti influences its competitive response to competition from A. albopictus and competitive effect on A. albopictus. A. aegypti from allopatric sites preformed better in competition with A. albopictus than did A. aegypti from sympatric sites because they had a stronger average effect on A. albopictus. This average was strongly influenced by the allopatric population from Miami. Competitive effect and response were uncorrelated among populations, indicating inconsistent ranking of A. aegypti in competitive effect and response. Although A. albopictus is generally a superior competitor to A. aegypti, a stronger competitive effect of particular A. aegypti populations on invading A. albopictus may contribute to competition-mediated biotic resistance to the invader. These results suggest that interpopulation variation in competitive ability of A. aegypti may contribute to failure of A. albopictus to invade parts of the southeastern United States and offer evidence of a contribution to biotic resistance by an inferior competitor. Geographic variation in competitive ability may be common and one general cause of variation in invasion success and impact.  相似文献   

3.
Dengue viruses are transmitted to humans through the bites of infected female aedine mosquitoes. Differences in the composition and structure of bacterial communities in the midguts of mosquitoes may affect the vector's ability to transmit the disease. To investigate and analyse the role of midgut bacterial communities in viral transmission, midgut bacteria from three species, namely Stegomyia aegypti (= Aedes aegypti), Fredwardsius vittatus (= Aedes vittatus) and Stegomyia albopicta (= Aedes albopictus) (all: Diptera: Culicidae), from dengue‐endemic and non‐endemic areas of Rajasthan, India were compared. Construction and analyses of six 16S rRNA gene libraries indicated that Serratia spp.‐related phylotypes dominated all clone libraries of the three mosquito species from areas in which dengue is not endemic. In dengue‐endemic areas, phylotypes related to Aeromonas, Enhydrobacter spp. and uncultivated bacterium dominated the clone libraries of S. aegypti, F. vittatus and S. albopicta, respectively. Diversity indices analysis and real‐time TaqMan polymerase chain reaction assays showed bacterial diversity and abundance in the midguts of S. aegypti to be higher than in the other two species. Significant differences observed among midgut bacterial communities of the three mosquito species from areas in which dengue is and is not endemic, respectively, may be related to the vectorial capacity of mosquitoes to carry dengue viruses and, hence, to the prevalence of disease in some areas.  相似文献   

4.
Aedes aegypti is among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history of Ae. aegypti and these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations of Ae. aegypti are basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis), Ae. aegypti moved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspecies Ae. aegypti formosus and a human commensal, Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all other Ae. aegypti than the named species Ae. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression between Ae. mascarensis and Ae. aegypti on Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domestic Ae. aegypti aegypti from Asia.  相似文献   

5.
This study was conducted to isolate and identify lactobacilli from larval and adult midgut of wild Aedes aegypti (Ae. aegypti) to find candidate bacteria for paratransgenic control. Characterization of the bacterial symbionts was done using Gram staining, motility test, catalase test, and biochemical tests, among others, and the morphological features were confirmed using a standard scheme that simplifies the identification of lactic acid bacteria. A total of 174 strains were isolated and identified, 135 strains from larval midgut and 39 strains from adult midgut (mean ± SE, 4.00 ± 0.72; P = 0.00). The isolated species were confirmed to be Lactobacillus fermentum, L. casei, L. acidophilus, L. viridescens, L. brevis and L. gasseri. It can be concluded that Ae. aegypti has the potential of harboring the cultivable bacterial symbionts. In conclusion, the isolated species were nominated for paratransgenic control, particularly L. fermentum, being found in large numbers from both larval and adulxt midgut.  相似文献   

6.
The DNA probes, P1887, P2405, P2056 (being specific tags for Aedes aegypti genes coding for ribosomal RNA) and a centric heterochromatin probe, K20-1A5, were chosen to hybridize the metaphase chromosomes from the testes of four mosquito species, Culex pipiens, Aedes aegypti, Aedes albopictus and Aedes triseriatus. In addition, a single plasmid, P2392, which contained the three probes, P1887, P2405 and P2056, was also used as chromosome landmark in aedine species. Only the Aedes aegypti metaphase chromosome 1-specific tag, P1887, was conserved in Aedes albopictus, Aedes triseriatus, and Culex pipiens metaphase chromosomes. Aedes triseriatus exhibited two gene loci, on chromosomes 1 and 3, coding for ribosomal RNA per haploid genome. When the specific probes for chromosomes 2 and 3, 2405 and 2056, were used in the fluorescence in situ hybridization technique against the metaphase chromosomes the fluorescent signals were not seen in Aedes albopictus, Aedes triseriatus or Culex pipiens. Also the centric heterochromatin probe, K20-1A5, exhibited strong fluorescent signals on chromosomes 1, 2 and 3 of Aedes aegypti. These fluorescent signals were not observed in metaphase chromosomes derived from the other aedine species, indicating that the centromere sequence can vary within the species.This paper was presented at the Second Arab Conference on Biotechnology and Genetic Engineering, held in the Kingdom of Bahrain, 15–17 April, 2002 and is published here with the endorsement of the Co-ordinator of the Scientific Committee, Professor Essam H. Ghanem, University of Bahrain. Its publication has been delayed because of the ill health of the senior author. Other papers from this conference were published in the July 2003 issue (vol. 19, no. 5).  相似文献   

7.
The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti.  相似文献   

8.
We investigated the oviposition behavior of Ae. aegypti and Ae. albopictus. In particular we examined whether small‐scale site characteristics and the presence of conspecifics or congeners altered oviposition by these mosquitoes. Various combinations of females of the two species were allowed to oviposit inside cages among either vegetation (potted plants) or structural components (wood and concrete blocks). Numbers of eggs deposited per female were compared between species, sides, and treatments. Most significant differences between treatments and species involved differences between single species and mixed species treatments. Ae. aegypti deposited more eggs/female in the vegetation side than in the structure side whereas the opposite pattern was evident for Ae. albopictus. Ae. aegypti females had higher frequency of skip oviposition than Ae. albopictus. An average of 63% of the containers in the two‐species treatments contained eggs of both species, with more frequent joint occurrences observed in the treatment with three females of each species than in the treatments with one of each. Our results point to the existence of various interactions between gravid Ae. aegypti and Ae. albopictus females at or near the oviposition sites but further experimental work is necessary to fully characterize the interactions and their specific mechanisms.  相似文献   

9.
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.  相似文献   

10.
Frequency dependent mosquito larval size (II and IV instars) and species selection by the water bug Diplonychus indicus against three mosquito species Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi was studied in the laboratory. The different frequencies used for each species selection were 20:30:50, 30:50:20, 50:20:30, 25:35:40, 35:40:25 and 40:25:35 of fourth instars of the respective three prey species. All nymphal water bugs (I–V instars) selected IV instar mosquito larvae and the mean proportion of late (larger) larvae eaten by the predator instars was significantly higher than the mean proportion of early (smaller) larvae eaten (F= 2.28; P < 0.001). In all six ratios used to determine the frequency dependent mosquito species selection, all the stages of the water bug selected Ae. aegypti over the other two species (F= 452.43; P < 0.001). The mean number of mosquito larvae eaten increased as its density increased based on various ratios of larvae offered. The study indicated that the predatory efficiency of D. indicus was high when Ae. aegypti was offered as prey, suggesting the utility of this mosquito predator in the control of dengue vectors.  相似文献   

11.
The objective of this study was to assess the parity, presence of blood in the stomach, and the gonotrophic discordance of females of Aedes aegypti and Aedes albopictus captured in two areas of the city of São Paulo. The captures were undertaken monthly, by aspiration, in the period from January, 2015 to August, 2017. All the females of the two species had their midguts and ovaries dissected to determine the presence of blood and the parity/stage of maturation. With regard to parity, 27% and 34% of the females of Ae. aegypti and Ae. albopictus, respectively, were parous or were in advanced stages of the development of their ovaries (33% and 27%, respectively). The larger part of the females of Ae. aegypti and Ae. albopictus contained blood in their stomachs (77% and 60%, respectively), beyond which 36% and 27% of the females of Ae. aegypti and Ae. albopictus, respectively, were in gonotrophic discordance. Our results indicate favorable conditions in the study areas because of the presence of parous females. Moreover, this frequent and multiple contact of Ae. aegypti and Ae. albopictus females with vertebrate hosts, such as humans, increases the possibility of transmitting the viruses they may be carrying.  相似文献   

12.
Summary A comparison of rectal morphology and ultrastructure is made between a freshwater (A. aegypti) and salt water (A. campestris) species of mosquito larvae, and between A. campestris larvae producing hyper- and hyposmotic urine.The epithelium of A. aegypti contains one cell type characterized by infolding of both the apical and basal membranes, straight lateral borders, and evenly distributed mitochondria.The rectum of A. campestris contains distinct anterior and posterior regions, each made up of a single cell type. These two regions can be distinguished on the basis of cell thickness, depth of apical infolding and distribution of mitochondria. The anterior region is similar to the rectum of A. aegypti, while the posterior region is considered unique to the salt-water species and hence probably is associated with the formation of hyperosmotic urine.In A. campestris, the apical (rather than lateral or basal) membranes are probably the site of hyperosmotic urine production. Two possible mechanisms for this process are discussed.This work was supported by operating grants from the National Research Council of Canada.  相似文献   

13.
In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of ‘lure & kill’ (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass‐trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, ∼4/premise), BG‐sentinel traps (BGSs; ∼15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre‐ and post‐treatment in all three areas using BGSs and sticky ovitraps (SOs) or non‐lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed ∼993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post‐hoc test). The third mass‐trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, ∼4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre‐ and post‐treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy.  相似文献   

14.
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition.  相似文献   

15.
Two ecotypes of Aedes aegypti, Ae. ae. aegypti and Ae. ae. formosus, were experimentally infected with a dengue 2 virus to test (1) the inheritance of susceptibility, and (2) the impact of infection on survival and reproduction. Ae. ae. aegypti, the main vector involved in dengue epidemics, displayed higher mortalities than Ae. ae. formosus, the ancestral form, which is a forest-dwelling, less anthropophilic species confined to Africa. Differential mortalities were observed between females with disseminated infection and females without disseminated infection. Ae. ae. formosus females with disseminated infection showed an increase in survival rate and reproduction success. These results are discussed in the light of changes in resource allocation that may occur in infected females.  相似文献   

16.
The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana are highly virulent control tools for insect pests and have been under evaluation for the control of globally important mosquito vectors such as Aedes aegypti. Here, we identified and isolated other virulent entomopathogenic fungi against Ae. aegypti. We collected 7 species of mosquitoes by human landing catch in 5 municipalities in Central and Northern Mexico and isolated 28 species of fungi. We harvested fungal conidia from six and assessed virulence against Ae. aegypti females. We observed variation in virulence of fungi in Ae. aegypti with the most virulent being Aspergillus tamarii, with a LT50 of 6.4 (±0.65) days and the least virulent was Trichoderma euskadiense with a LT50 of 16.3 (±1.5) days. Additional assays evaluated the impact of the fungi on Ae. aegypti fecundity and fertility and A. tamarii had the highest for both, resulting in 60% and 37% decrease, respectively. These results provide support for the potential utility of A. tamarii as an entomopathogenic control tool for the dengue vector, Ae. aegypti, pending further evaluations of environmental and nontarget safety.  相似文献   

17.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

18.
Competitive displacements or reductions of resident populations of insects, often effected by a related species, may be caused by a variety of mechanisms. Satyrization is a form of mating interference in which males of one species mate with females of another species, significantly decreasing their fitness and not generating hybrids. Satyrization has been established to be the probable cause of competitive displacements of resident mosquitoes by invasive species, especially of Aedes aegypti by Aedes albopictus, two important vectors of dengue and chikungunya viruses. Mathematical models predict that even low levels of asymmetric mating interference are capable of producing competitive displacements or reductions. Couplings of virgin Ae. aegypti females with Ae. albopictus males effectively sterilize these females through the monogamizing actions of male accessory gland products, but the converse interspecific mating does not impact the future reproduction of Ae. albopictus females. Populations of Ae. aegypti exposed to satyrization quickly evolve resistance to interspecific mating, which is believed to ameliorate reproductive interference from, and promote co‐existence with, Ae. albopictus. The evolution of satyrization resistance among Ae. aegypti in laboratory cages is accompanied by fitness costs, such as reduced fecundity and slower receptivity to conspecific males. Cage experiments and field observations indicate that Ae. albopictus males are capable of satyrizing females of other species of the Stegomyia subgenus, potentially leading to competitive displacements, and possible extinctions, especially of endemic species on islands. Examination of other examples of reproductive interference in insects reveals few parallels to the mechanism and outcomes of satyrization by Ae. albopictus. We conclude by posing the hypothesis that satyrization may favor the ecological success of Ae. albopictus, and suggest many lines for future research on this phenomenon.  相似文献   

19.
The role of lactic acid was evaluated for attraction of Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, and Aedes aegypti in the laboratory using a dual‐port olfactometer. When lactic acid was combined with chicken odor, attraction was increased for Cx. quinquefasciatus compared to chicken odor alone but not for Cx. nigripalpus, Cx. tarsalis, and Ae. aegypti. Lactic acid combined with hand odor did not change attraction of Cx. tarsalis and Ae. aegypti but decreased attraction of Cx. nigripalpus and Cx. quinquefasciatus. The addition of lactic acid to CO2 increased attraction of Ae. aegypti and Cx. quinquefasciatus but reduced attraction of Cx. nigripalpus and Cx. tarsalis. Use of commercial lactic acid baits with CO2 resulted in a similar trend except for Cx. nigripalpus which showed no difference. A blend of lactic acid, acetone, and dimethyl disulfide was attractive to Ae. aegypti (63.4%) but elicited low responses by all Culex spp. (1.3–26.8%). Addition of the blend to CO2 increased attraction of Ae. aegypti and Cx. quinquefasciatus but reduced attraction of Cx. nigripalpus and Cx. tarsalis. The mixture of compounds plus CO2 was as attractive as a hand for Cx. quinquefasciatus, Cx. tarsalis, and Ae. aegypti.  相似文献   

20.
In 2008, an outbreak of yellow fever occurred in Abidjan. The entomological investigations confirm that Abidjan is at risk of yellow fever with a suspicion of the National Park of Banco (NPB) forest as a likely area of re‐emergence. This study aims to assess the dispersion of sylvatic vectors of arboviruses from the NPB forest to the surrounding areas (Andokoi and Sagbé). The sampling was done in the rainy season using the WHO layer‐traps technique. Among the six species of Aedes sampled, Aedes aegypti and Aedes africanus were the potential vectors of arboviruses. Both species were collected in Sagbé but only Ae. aegypti in Andokoi. Only Ae. aegypti were present 400 and 800 m from NPB forest, but at 200 m, it showed respective proportions of 75.5% and 87.5% in Sagbé and Andokoi. In the NPB forest, however, Ae. africanus has been the predominant species. The study showed the presence of Ae. aegypti in Andokoi and Sagbé. However, Ae. africanus was found in the NPB forest and in the 200 m radius in Sagbé. The establishment of an entomological surveillance program in all areas would therefore be essential for the prevention of arboviruses outbreaks in Abidjan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号