首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
Traditionally, control of European corn borer (Ostrinia nubilalis) Hübner has been achieved through the use of chemical insecticides. With increasing emphasis on reducing pesticide inputs in agricultural production, alternative management technologies are now being used including transgenic silage corn modified to express Cry1Ab protein toxins derived from Bacillus thuringiensis (Bt) Berliner. The Cry1Ab toxin is expressed by all plant cells and throughout the growing season. Furthermore, the toxins are exuded from corn plant roots into the rhizosphere, raising concerns over possible side-effects on non-target beneficial organisms in the same habitat. In addition, detrivores are exposed to crop residues containing the toxin when incorporated into the soil. The current 2-year study (2003, 2004) evaluated effects of two silage-corn varieties: Pioneer var. 38A25 (Bt-corn expressing the Cry1Ab toxin) and Pioneer var. 38A24 (parent isoline) on species diversity and evenness of carabid beetles and Collembola. Pitfall traps were used to collect surface-dwelling species on a bimonthly schedule from April to October. Soil cores were taken once a month from April to October to sample subterranean species, which were extracted using Berlese funnels. All individuals were recorded and identified where possible to species level for analysis in the Simpson’s D and Shannon–Wiener H’ diversity indices. Evenness was measured using Simpson’s E’, after which dominant species were analyzed in a multivariate ordination analysis. Results showed Bt-corn had no negative effects on any of the organisms analyzed. There was a significant year effect on the abundance of surface-dwelling Collembola and on species diversity of soil-dwelling Collembola. Our findings suggest that crop management practices and/or environmental conditions (e.g., heavy rainfall during the 2004 growing season) had the greatest impact on species diversity and evenness, rather than the crop itself (Bt or isoline).  相似文献   

2.

Australia’s gene technology regulatory scheme (GT Scheme) regulates activities with genetically modified organisms (GMOs, organisms modified by gene technology), including environmental releases. The scope of regulation, i.e. what organisms are and are not regulated, is set by the Gene Technology Act 2000 (GT Act) and GT Regulations 2001 (GT Regulations). The GT Act gives broad, overarching definitions of ‘gene technology’ and ‘GMO’ but also provides for exclusions and inclusions in the GT Regulations. Whether organisms developed with genome editing techniques are, or should be, regulated under countries’ national GMO laws is the subject of debate globally. These issues are also under active consideration in Australia. A technical review of the GT Regulations was initiated in 2016 to clarify the regulatory status of genome editing. Proposed draft amendments are structured around whether the process involves introduction of a nucleic acid template. If agreed, amendments would exclude from regulation organisms produced using site directed nuclease (SDN) 1 techniques while organisms produced using oligonucleotide mutagenesis, SDN-2 or SDN-3 would continue to be regulated as GMOs. The review of the GT Regulations is still ongoing and no legislative changes have been made to the GT Regulations. A broader policy review of the GT Scheme was undertaken in 2017–2018 and as a result further work will be undertaken on the scope and definitions of the GT Act in light of ongoing developments.

  相似文献   

3.
Vonesh JR  Buck JC 《Oecologia》2007,154(1):219-226
Understanding the impacts of pesticides on non-target organisms is an important issue for conservation biology. Research into the environmental consequences of pesticides has largely focused on pesticide toxicity. We have less understanding of the nonlethal effects of pesticides, and the consequences of nonlethal effects for species and communities. For example, we know very little about whether pesticides alter habitat selection behavior. Understanding whether pesticides alter habitat selection is important because pesticide-induced shifts in habitat selection could either magnify or reduce the toxic effects of contaminants by funneling organisms into or directing them away from contaminated sites. Here we present four field experiments that examine the effect of the commercial pesticide Sevin and its active ingredient, carbaryl, on oviposition site selection by the gray treefrog (Hyla chrysoscelis). Our results show that uncontaminated pools consistently received 2-3 times more eggs than contaminated pools; that treefrogs appeared to respond to Sevin directly, not indirectly via its effects on the aquatic food web, and that this preference persisted across a range of temporal and spatial scales. Both Sevin and carbaryl per se reduced oviposition, while other volatile chemicals (e.g., our solvent control, acetone) had no effect. These findings suggest that in order to understanding the consequences of contaminants in aquatic systems we will need to consider not only toxicity, but also how contaminant effects on habitat selection alter the way organisms distribute themselves in the environment.  相似文献   

4.
Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are among the most harmful environmental contaminants. Their widespread distribution due to unintentional or unknown release coincides with environmental persistence, acute and chronic toxicity to living organisms, and long-term effects due to the compounds’ tendency for bioaccumulation and biomagnification. While microbial aerobic degradation of PCDD/Fs is mainly reported for the turnover of low chlorinated congeners, this review focuses on anaerobic reductive dehalogenation, which may constitute a potential remediation strategy for polychlorinated compounds in soils and sediments. Microorganisms in sediments and in microcosms or enrichment cultures have been shown to be involved in the reductive dechlorination of dioxins. Bacteria related to the genus Dehalococcoides are capable of the reductive transformation of dioxins leading to lower chlorinated dioxins including di- and monochlorinated congeners. Thus, reductive dehalogenation might be one of the very few mechanisms able to mediate the turnover of polychlorinated dioxins by reducing their toxicity and paving the way for a subsequent breakdown of the carbon skeleton.  相似文献   

5.
This paper provides an overview of the U.S. regulatory framework governing genetic biocontrol efforts for invasive fish. Genetic biocontrol refers to the intentional release of genetically modified organisms (GMOs) into the environment to control a target population of a non-native species. The terms “genetically modified” and “genetically engineered” are often used interchangeably, despite the scientific distinctions. A GMO is an organism that has had its genetic material altered or modified by humans through any method, including conventional breeding. Genetic engineering, as defined by the Food and Drug Administration (FDA), is the use of recombinant DNA techniques to introduce new characteristics or traits into an organism. GE organisms are therefore a subset of GMOs. As this paper will discuss, existing laws focus on GE organisms raising significant questions as to whether organisms modified without utilizing rDNA techniques fall within the jurisdiction of any federal agency. Under the 1986 Coordinated Framework for Regulation of Biotechnology, three federal agencies have primary responsibility over biotechnology—the Environmental Protection Agency (EPA), the U.S. Department of Agriculture, and the FDA. Because the EPA has exempted biological control agents from regulation as pesticides and no fish species are currently considered plant pests, the FDA is the agency responsible for approving the use of genetically engineered fish for biocontrol. FDA regulates genetically engineered animals through its New Animal Drug Application (NADA) process. The NADA process presents several challenges to effective and transparent regulation of genetic biocontrol, including the FDA’s focus on drug safety, secrecy provisions potentially limiting disclosure of the results of environmental reviews, and the secondary role of the Fish and Wildlife Service, the federal agency with the most experience with invasive species management. In addition, relying on the NADA process creates a significant regulatory gap as NADA approval is only required for GE organisms. The regulatory framework for GMOs created for genetic biocontrol without rDNA technology is unclear and primary responsibility may fall to the states. Given its extensive experience with hatcheries, invasive fish species control, and environmental reviews, the Fish and Wildlife Service (FWS) is the more appropriate agency to review applications for genetic biocontrol. Efforts should be undertaken now, while genetic biocontrol is still in the theoretical stages, to increase the role of the FWS in the permitting process either through formal regulations or more informal mechanisms such as memorandum of understanding.  相似文献   

6.
7.
Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.  相似文献   

8.
The filamentous fungus Graphium sp. (ATCC 58400) co-metabolically oxidizes the gasoline oxygenate methyl tertiary butyl ether (MTBE) after growth on gaseous n-alkanes. In this study, the enzymology and regulation of MTBE oxidation by propane-grown mycelia of Graphium sp. were further investigated and defined. The trends observed during MTBE oxidation closely resembled those described for propane-grown cells of the bacterium Mycobacterium vaccae JOB5. Propane-grown mycelia initially oxidized the majority (∼95%) of MTBE to tertiary butyl formate (TBF), and this ester was biotically hydrolyzed to tertiary butyl alcohol (TBA). However, unlike M. vaccae JOB5, our results collectively suggest that propane-grown mycelia only have a limited capacity to degrade TBA. None of the products of MTBE exerted a physiologically relevant regulatory effect on the rate of MTBE or propane oxidation, and no significant effect of TBA was observed on the rate of TBF hydrolysis. Together, these results suggest that the regulatory effects of MTBE oxidation intermediates proposed for MTBE-degrading organisms such as Mycobacterium austroafricanum are not universally relevant mechanisms for MTBE-degrading organisms. The results of this study are discussed in terms of their impact on our understanding of the diversity of aerobic MTBE-degrading organisms and pathways and enzymes involved in these processes.  相似文献   

9.
Naturally occurring entomopathogens are important regulatory factors in insect populations. Many species are employed as biological control agents of insect pests in row and glasshouse crops, orchards, ornamentals, range, turf and lawn, stored products, and forestry and for abatement of pest and vector insects of veterinary and medical importance. The comparison of entomopathogens with conventional chemical pesticides is usually solely from the perspective of their efficacy and cost. In addition to efficacy, the advantages of use of microbial control agents are numerous. These include safety for humans and other nontarget organisms, reduction of pesticide residues in food, preservation of other natural enemies, and increased biodiversity in managed ecosystems. As with predators and parasitoids, there are three basic approaches for use of entomopathogens as microbial control agents: classical biological control, augmentation, and conservation. The use of a virus (Oryctes nonoccluded virus), a fungus (Entomophaga maimaiga), and a nematode (Deladenus siricidicola) as innoculatively applied biological control agents for the long-term suppression of palm rhinoceros beetle (Oryctes rhinoceros), gypsy moth (Lymantria dispar), and woodwasp (Sirex noctilio), respectively, has been successful. Most examples of microbial control involve inundative application of entomopathogens. The most widely used microbial control agent is the bacterium Bacillus thuringiensis. The discovery of new varieties with activity against Lepidoptera, Coleoptera, and Diptera and their genetic improvement has enhanced the utility of this species. Recent developments in its molecular biology, mode of action, and resistance management are reviewed. Examples of the use, benefits, and limitations of entomopathogenic viruses, bacteria, fungi, nematodes, and protozoa as inundatively applied microbial control agents are presented. Microbial control agents can be effective and serve as alternatives to broad-spectrum chemical insecticides. However, their increased utilization will require (1) increased pathogen virulence and speed of kill; (2) improved pathogen performance under challenging environmental conditions (cool weather, dry conditions, etc.); (3) greater efficiency in their production; (4) improvements in formulation that enable ease of application, increased environmental persistence, and longer shelf life; (5) better understanding of how they will fit into integrated systems and their interaction with the environment and other integrated pest management (IPM) components; (6) greater appreciation of their environmental advantages; and (7) acceptance by growers and the general public. We envision a broader appreciation for the attributes of entomopathogens in the near to distant future and expect to see synergistic combinations of microbial control agents with other technologies. However, if future development is only market driven, there will be considerable delays in the implementation of several microbial control agents that have excellent potential for use in IPM programs.  相似文献   

10.
Summary Microalgae are a highly diverse group of unicellular organisms comprising the eukaryotic protists and the prokaryotic cyanobacteria or blue-green algae. The microalgae have a unique environmental status; being virtually ubiquitous in euphotic aquatic niches, they can occupy extreme habitats ranging from tropical coral reefs to the polar regions, and they contribute to half of the globe’s photosynthetic activity. Furthermore, they form the basis of the food chain for more than 70% of the world’s biomass. Microalgae are a valuable environmental and biotechnological resource, and the aim of this review is to explore the use of in vitro technologies in the conservation and sustainable exploitation of this remarkable group of organisms. The first part of the review evaluates the importance of in vitro methods in the maintenance and conservation of microalgae and describes the central role of culture collections in applied algal research. The second part explores the application of microalgal in vitro technologies, particularly in the context of the aquaculture and biotechnology industries. Emphasis is placed upon the exploitation of economically important algal products including aquaculture feed, biomass production for the health care sector, green fertilizers, pigments, vitamins, antioxidants, and antimicrobial agents. The contribution that microalgae can make to environmental research is also appraised; for example, they have an important role as indicator organisms in environmental impact assessments. Similarly, designated culture collection strains of microalgae are used for ecotoxicity testing. Throughout the review, emphasis is placed on the application of in vitro techniques for the continued advancement of microalgal research. The paper concludes by assessing future perspectives for the novel application of microalgae and their products.  相似文献   

11.
Enhanced biological phosphorus removal (EBPR) from wastewater can be more-or-less practically achieved but the microbiological and biochemical components are not completely understood. EBPR involves cycling microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve a selection of microorganisms with high capacity to accumulate polyphosphate intracellularly in the aerobic period. Biochemical or metabolic modelling of the process has been used to explain the types of carbon and phosphorus transformations in sludge biomass. There are essentially two broad-groupings of microorganisms involved in EBPR. They are polyphosphate accumulating organisms (PAOs) and their supposed carbon-competitors called glycogen accumulating organisms (GAOs). The morphological appearance of microorganisms in EBPR sludges has attracted attention. For example, GAOs as tetrad-arranged cocci and clusters of coccobacillus-shaped PAOs have been much commented upon and the use of simple cellular staining methods has contributed to EBPR knowledge. Acinetobacter and other bacteria were regularly isolated in pure culture from EBPR sludges and were initially thought to be PAOs. However, when contemporary molecular microbial ecology methods in concert with detailed process performance data and simple intracellular polymer staining methods were used, a betaproteobacteria called ‘Candidatus Accumulibacter phosphatis’ was confirmed as a PAO and organisms from a novel gammaproteobacteria lineage were GAOs. To preclude making the mistakes of previous researchers, it is recommended that the sludge ‘biography’ be well understood – i.e. details of phenotype (process performance and biochemistry) and microbial community structure should be linked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Management programs for major forest defoliators such as gypsy moths or forest tent caterpillars, and crop pests such as the European corn borer have shifted from broad-spectrum insecticides to more environmentally benign microbial pesticides such as Bacillus thuringiensis (foliage sprays and transgenic toxin expression in plant tissues). Phytochemically resistant host plants and natural enemies have been used as alternative pest management strategies (including generalist tachinid flies such as Compsilura, viruses, microsporidians, and fungi), but all of these have some non-target impacts, as described from literature review. A sequence of lab and field studies were conducted to determine non-target impacts on native Lepidoptera in North America. The conclusions reached are that a decision not to spray Bt pesticides (i.e. to allow defoliation and natural pest outbreaks to run their course) could be as bad or worse for non-target Lepidoptera as the microbial insecticides would be. The important concept that must be maintained is that all pest management programs have some risk of negative non-target impacts, but it is the magnitude and relative importance that will remain the most critical issue for environmental impacts and pest management.  相似文献   

13.
Medicinal innovation has led to the discovery and use of thousands of human and veterinary drugs. With this comes the potential for unintended effects on non-target organisms exposed to pharmaceuticals inevitably entering the environment. The impracticality of generating whole-organism chronic toxicity data representative of all species in the environment has necessitated prioritization of drugs for focused empirical testing as well as field monitoring. Current prioritization strategies typically emphasize likelihood for exposure (i.e. predicted/measured environmental concentrations), while incorporating only rather limited consideration of potential effects of the drug to non-target organisms. However, substantial mammalian pharmacokinetic and mechanism/mode of action (MOA) data are produced during drug development to understand drug target specificity and efficacy for intended consumers. An integrated prioritization strategy for assessing risks of human and veterinary drugs would leverage available pharmacokinetic and toxicokinetic data for evaluation of the potential for adverse effects to non-target organisms. In this reiview, we demonstrate the utility of read-across approaches to leverage mammalian absorption, distribution, metabolism and elimination data; analyse cross-species molecular target conservation and translate therapeutic MOA to an adverse outcome pathway(s) relevant to aquatic organisms as a means to inform prioritization of drugs for focused toxicity testing and environmental monitoring.  相似文献   

14.
Summary U.S. Senator Christopher Bond joined Dr. Roger Beachy at the podium during the Society for In Vitro Biology’s 2001 Congress Plenary Session on Opportunities and Challenges in Plant Biotechnology to Benefit Health and Sustainability, on June 17, 2001, in St. Louis, Missouri. Senator Bond presented an advocate’s view regarding the benefits of plant biotechnology development. The strengths of the biotechnology regulatory system were extolled. The opportunities of this new technology to produce more and nutritionally superior food, additional plant-based medicines and vaccines, plant-based renewable sources of energy, and renewable industrial products were outlined. The benefits to the environment by adopting plant biotechnological innovations were discussed. Developing public policy regarding this new technology should be based on facts, science, and reason.  相似文献   

15.
We examined annual variation in production, recruitment and density of the three most abundant vertebrate species of the River Laxá at Lake Myvatn, Iceland: Barrow’s goldeneye, Bucephala islandica, harlequin duck, Histrionicus histrionicus, and brown trout, Salmo trutta, in relation to food resources and other environmental variables. The study is largely based on correlations from long-term monitoring series in the period 1975–2002. Production of young in the harlequin duck was significantly correlated with food resources (the blackfly, Simulium vittatum) of the river, as was the recruitment of brown trout to the angling stock. In Barrow’s goldeneye, which uses both the lake and the river, dispersion of adults in spring and young in August was influenced by the availability of aquatic insects in each habitat. The dispersion of Barrow’s goldeneye tracks the availability of aquatic insects in each of these two main habitats. Introduced Amercian mink, Mustela vison, may have affected spring numbers and dispersion of harlequin ducks, but the evidence was not conclusive. Numbers of both duck species and the trout (as CPUE) were relatively stable, although a sharp drop in numbers followed by slow recovery was observed in Barrow’s goldeneye, and an increase was observed in harlequin ducks in the first year of study.  相似文献   

16.
Forest trees are fundamental components of our environment, mainly due to their long lifetime and important role in forest ecology. In the past, some non-native tree species and taxa from traditional breeding have induced severe environmental impacts such as biological invasion, changes in the ‘gene pool’, and spread of diseases in forestry. Genetically modified trees obtained in different research groups worldwide are particularly confronted with increased concerns regarding biosafety issues. In the light of current biosafety research worldwide, various threats facing forests and natural tree populations are evaluated in this review: biological invasions, horizontal gene transfer, vertical gene transfer and effects on other organisms. Results available from groups working in biosafety research and risk avoidance using forest trees, with emphasis on transgenic trees, are reviewed. Independent biosafety research as well as the establishment of biosafety research programs for forest trees financed by national and international authorities is now more important than ever before. Biosafety problems detected in the past clearly show the importance of a prior case-by-case evaluation of non-native species, new taxa and also genetically modified trees according to the precautionary principle before their release to avoid risks to the environment and human health.  相似文献   

17.
Cereals and cereal- derived products constitute the base of human and animal feeding in South American countries. This review attempts to give an overview of the ochratoxin A (OTA) occurrence and potential sources of OTA contamination in those products. The environmental conditions as humidity and temperature in the colonization of the substrates by Aspergillus section Nigri isolated from corn kernels were also discussed. The available information on the ochratoxigenic mycoflora and OTA presence in corn, corn based food and feed is limited. Only few surveys have been carried out in Argentina, Ecuador and Brazil; which showed that Aspergillus niger aggregate and A. ochraceus species would be the main source of OTA. It’s possible to emphasize that, the species A. carbonarius has not been isolated from these substrates and Penicillium verrucosum was isolated only from pig feeds of Argentinean samples in low percentage. Studies about the ecophysiology of ochratoxigenic fungi and OTA occurrence are in progress in Latin America to reduce the impact of this toxin in the food chain. Carina E. Magnoli, Stella M. Chiacchiera, Ana M. Dalcero—Members of the Research Career Andrea L. Astoreca—Fellowship of CONICET  相似文献   

18.
Normative adontometric data are presented on a sample of 100 adult Cercopithecus aethiops(51 male, 49 female). When correlation effects among the teeth were held constant through multivariate canonical analyses, contributions of individual tooth loci to the male-female distance were found to be similar to those isolated by univariate means. The present study fails to support Garn’s field theory of sex dimorphism. When these patterns of sexual dimorphism were contrasted with those of three other conspecific groups, the anterior teeth were found to show greater intrapopulation variation than the posterior teeth. This, together with the finding that Penrose’s shape distances between the groups were greater for anterior than postcanine teeth, provides evidence in support of Suolé’s hypothesis. The latter suggests, inter alia, that high coefficients of variation indicate a proportionately higher environmental than hereditary contribution to phenotypic variation. Negative correlations between tooth size and coefficients of variation suggest that tooth-size variability is related to size rather than occlusal complexity.  相似文献   

19.
Selected biological control agents and conventional pesticides were used to critically review the applicability of a newly developed Risk Indicator (RI) system. Five basic components are proposed for the calculation of the overall environmental risk score: persistence of the active ingredient, dispersal potential, range of non-target organisms that are affected, and direct and indirect effects on the ecosystem. Several risk measurement systems were reviewed; risk categories in the proposed system were modified from a model developed for classical biocontrol agents. Additionally, one new category was included, to assess the risks to vertebrate non-target species. Besides a detailed discussion of the new RI model, the suitability of the model was demonstrated by calculating the risk scores for 17 selected products. It became obvious that the environmental risk score varied greatly within the assessed chemical products, and also within the group of biological products. The use pattern greatly influenced the estimated environmental risk posed by any given product. The overall environmental risk score varied between a very low risk score of 24 (Coniothyrium minitans, soil application) and a near maximum risk score of 4275 (high risk reference DDT, foliar spray). The proposed model can be used to communicate environmental risk and to design lower risk integrated pest management strategies. It is suggested that the proposed RI system may serve to define low risk and reduced risk pesticides. Yet, it remains debatable whether the RI will be useful in determining acceptability of data waivers for regulatory purposes.  相似文献   

20.
Huang B  Guo J  Yi B  Yu X  Sun L  Chen W 《Biotechnology letters》2008,30(7):1121-1137
Heterologous expression of genes involved in the biosynthesis of various products is of increasing interest in biotechnology and in drug research and development. Microbial cells are most appropriate for this purpose. Availability of more microbial genomic sequences in recent years has greatly facilitated the elucidation of metabolic and regulatory networks and helped gain overproduction of desired metabolites or create novel production of commercially important compounds. Saccharomyces cerevisiae, as one of the most intensely studied eukaryotic model organisms with a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance, can be capitalized upon to enable a substantial increase in the industrial application of this yeast. In this review, we describe recent efforts made to produce commercial secondary metabolites in Saccharomyces cerevisiae as pharmaceuticals. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, such as naringenin, coumarate, artemisinin, taxol, amorphadiene and vitamin C, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号