首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Lactalbumin: a calcium metalloprotein   总被引:3,自引:0,他引:3  
Metal analyses and the studies of the effects of EDTA on unfolding reactions have shown that α-lactalbumin is a calcium metalloprotein. The role of the calcium binding in its biological activity is considered. A plausible site of binding is presented on the basis of the metal-binding site of lysozyme and of the structural models of the protein based on the lysozyme structure.  相似文献   

2.
Proteoglycans: structure and function   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
6.
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.  相似文献   

7.
8.
Yeast centromeres: structure and function   总被引:16,自引:0,他引:16  
J Carbon 《Cell》1984,37(2):351-353
  相似文献   

9.
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.  相似文献   

10.
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.  相似文献   

11.
Cell membranes--composition: structure: function   总被引:2,自引:0,他引:2  
  相似文献   

12.
Thyroglobulin structure and function: recent advances   总被引:4,自引:0,他引:4  
Thyroglobulin is a large-size iodoglycoprotein specific to thyroid tissue and is the substrate for the synthesis of thyroid hormones, thyroxine and 3,5,3'-triiodothyronine. Recent studies, which greatly benefited from recombinant DNA methodologies, improved the knowledge of several structural features of this dimeric protein and permitted insights into some structure-function relationships. Analysis-function of the primary structure of the human thyroglobulin monomer revealed several main characteristics: 1) 3 types of internal homologies; 2) extensive homology with the bovine thyroglobulin monomer and known partial sequences in the thyroglobulins of other mammalian species; 3) significant homologies with 2 other non-thyroid proteins (acetylcholinesterase and the invariant chain of the Ia class II histocompatibility antigen); 4) a terminal localization of the hormonogenic sites at both ends of the monomer. Current studies aim at determining conformational characteristics, understanding the molecular mechanisms of thyroid hormone formation and unraveling those interactions which in the thyroid cell and the thyroid follicle will permit this large pro-hormone to synthesize and release a few small thyroid hormone molecules. A more precise knowledge of this molecule in higher vertebrates and during evolution would impart valuable information concerning thyroid pathology, since thyroglobulin has been implicated in some genetic and in autoimmune thyroid diseases.  相似文献   

13.
The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca2+-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.Supported by a grant from the Medical Research Council of Canada  相似文献   

14.
15.
Analysis of microtubule proteins from several sources has revealed a molecular complexity consistent with the proposed multi-functional nature of tubulin and microtubule-associated proteins (MAP). Less certain is the actual range of functions attributable to microtubules and how the variability exhibited by the microtubule proteins translates into functional specificity. In spite of the conceptual difficulties, an exciting picture of structure/function integration is emerging from the study of microtubules.  相似文献   

16.
Viral ion channels: structure and function   总被引:9,自引:0,他引:9  
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.  相似文献   

17.
The plant pathogenic single‐strand DNA‐containing geminiviruses have been the recent focus of intense investigation, owing both to their agronomic importance and to their potential as vectors for the expression of foreign genes in plants. Molecular genetic studies have provided detailed information on the genomic organization of many of these viruses. A greater genetic complexity has been demonstrated among the members of this viral family than had previously been suspected, as well as an apparently rapid rate of evolution of genetic diversity. We now recognize fundamental differences in the genome structure and organization of the whitefly‐ and leafhopper‐transmitted viruses, as well as among those geminiviruses infecting dicotyledonous or monocotyledonous hosts. This knowledge has provided new insights into the evolution of these viruses. The viral genes involved in replication and in systemic movement in the plant have been defined, and viral origins for single‐strand (ss) and double‐strand (ds) DNA replication have been mapped to small nucleotide regions. With the structural features of the viral genomes now well defined, current efforts are focused on elucidating the molecular aspects of viral gene regulation and interactions with host‐cell components that lead to the production of disease. Recent progress in determining the mechanism of replication and systemic movement and the contributions of these to symptom and disease development are discussed in the context of the potential for genetically engineering disease‐resistant plants.  相似文献   

18.
Plasmodesmata remain one of the outstanding mysteries in plant biology. In providing conduits for the exchange of small and large, informational molecules they are central to the growth, development and defence of all higher plants. In the past few years, strategies have been devised for the molecular dissection of plasmodesmal composition and function, and we are beginning to see how these enigmatic structures will become to be understood.  相似文献   

19.
Mammalian G proteins: structure and function   总被引:3,自引:0,他引:3  
  相似文献   

20.
Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyltransferases are spermidine synthase and spermine synthase but other members of this family including an N(1)-aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号