首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

2.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclo-oxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2 alpha, prostacyclin and thromboxane A2. Prostaglandins E2 and F2 alpha are the principal cyclo-oxygenase products of this interaction. We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2 alpha by leukocytes.  相似文献   

3.
It has been postulated that the ratio of prostacyclin/thromboxane A2 in the blood is an important marker for atherosclerosis. We studied the role of the Acetylated Low Density Lipoprotein (Acetyl-LDL) on the arachidonic acid metabolism in macrophages, the progenitor of the foam-cells in atheroma. When stimulated by Acetyl-LDL, macrophage released and metabolized arachidonic acid. This effect was time- and dose-dependent. Only 50% of the Acetyl-LDL-induced arachidonic acid released was metabolized while more than 90% of zymosan or A23187 induced arachidonic acid released was metabolized. Furthermore, when the macrophages were stimulated by Acetyl-LDL, a decrease of prostaglandin E2 and an increase of the levels of prostacyclin and thromboxane were noted. The implications of these observations in the pathogenesis of atherosclerosis are discussed.  相似文献   

4.
Resting rat pulmonary alveolar macrophages exposed to acrolein were stimulated to synthesize and release thromboxane B2 and prostaglandin E2 in a dose-dependent manner. Zymosan-activated pulmonary alveolar macrophages released approximately twice as much prostaglandin E2 as thromboxane B2, whereas acrolein-activated pulmonary alveolar macrophages released 4-5 times less prostaglandin E2 than thromboxane B2. In the zymosan-stimulated pulmonary alveolar macrophages, acrolein also induced a reversal in the relative amounts of prostaglandin E2 and thromboxane B2 synthesized and released into the culture medium. This reversal was achieved by a dose-dependent reduction in prostaglandin E2 synthesis. Although phagocytosis was also inhibited in a dose-dependent manner, the reduction in prostaglandin E2 appeared to be partially independent of particle ingestion since thromboxane B2 synthesis was not affected by low doses of acrolein. In fact, high doses induced a slight enhancement in thromboxane B2 synthesis. These results suggest that acrolein selectively inhibited the enzyme, prostaglandin endoperoxide E isomerase, necessary for the conversion of the endoperoxide to prostaglandin E2. Sulfhydryl reagents such as N-ethylmaleimide and 5,5'-dithiobis (2-nitrobenzoic acid) mimicked acrolein's effects, and reduced glutathione afforded protection against the effects of acrolein. These results indicated the possible involvement of acrolein's sulfhydryl reactivity in the inhibition of the isomerase enzyme. Propionaldehyde had no effect on macrophage arachidonic acid metabolism whereas crotonaldehyde mimicked the effects of acrolein. Pulmonary macrophages were unable to reverse the acrolein effects on arachidonate metabolite synthesis after 6 h in an acrolein-free environment. These data indicated the necessity of the unsaturated carbon bond for the acrolein effects on arachidonic acid metabolism and the relative irreversibility of acrolein's reaction with the macrophage.  相似文献   

5.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

6.
Mechanism of phosgene-induced lung toxicity: role of arachidonate mediators   总被引:1,自引:0,他引:1  
We have previously shown that phosgene markedly increases lung weight gain and pulmonary vascular permeability in rabbits. The current experiments were designed to determine whether cyclooxygenase- and lipoxygenase-derived mediators contribute to the phosgene induced lung injury. We exposed rabbits to phosgene (1,500 ppm/min), killed the animals 30 min later, and then perfused the lungs with a saline buffer for 90 min. Phosgene markedly increased lung weight gain, did not appear to increase the synthesis of cyclooxygenase metabolites, but increased 10-fold the synthesis of lipoxygenase products. Pre- or posttreatment with indomethacin decreased thromboxane and prostacyclin levels without affecting leukotriene synthesis and partially reduced the lung weight gain caused by phosgene. Methylprednisolone pretreatment completely blocked the increase in leukotriene synthesis and lung weight gain. Posttreatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized competitive inhibitor of arachidonic acid metabolism, or the leukotriene receptor blockers, FPL 55712 and LY 171883, also dramatically reduced the lung weight gain caused by phosgene. These results suggest that lipoxygenase products contribute to the phosgene-induced lung damage. Because phosgene exposure did not increase cyclooxygenase synthesis or pulmonary arterial pressure, we tested whether phosgene affects the lung's ability to generate or to react to thromboxane. Infusing arachidonic acid increased thromboxane synthesis to the same extent in phosgene-exposed lungs as in control lungs; however, phosgene exposure significantly reduced pulmonary vascular reactivity to thromboxane but not to angiotension II and KCl.  相似文献   

7.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

8.
Prostanoid synthesis is limited by the availability of free arachidonic acid. This polyunsaturated fatty acid is liberated by phospholipases and usually is an intermediate of the deacylation-reacylation cycle of membrane phospholipids. In rat peritoneal macrophages, ethylmercurisalicylate (merthiolate) or N-ethylmaleimide (NEM) dose dependently inhibited the incorporation of arachidonic acid into cellular phospholipids, at lower concentrations specifically into phosphatidylcholine. Furthermore, merthiolate could be shown to be a rather selective inhibitor of lysophosphatidylcholine acyltransferase. In contrast, phospholipase A2 activity was not affected over a wide dose range. Consequently, macrophages showed a large increase in prostanoid synthesis (prostaglandin E, prostacyclin and thromboxane) in the presence of both lysophosphatide acyltransferase inhibiting agents. Similar results were obtained with human platelets, in which merthiolate increased the release of thromboxane. Addition of free arachidonic acid also enhanced prostanoid synthesis in macrophages. At optimal concentrations, merthiolate had no further augmenting effect. It is concluded that the rate of prostanoid synthesis is not only controlled by phospholipase A2 activity, but rather by the activity of the reacylating enzymes, mainly lysophosphatide acyltransferase.  相似文献   

9.
The Vinca alkaloid vinblastine causes dose-dependent inhibition of malondialdehyde formation and aggregation in activated human platelets as a result of inhibition of arachidonic acid metabolism via the thromboxane pathway (Brammer, J.P., Kerecsen, L. and Maguire, M.H. (1982) Eur. J. Pharmacol. 81, 577). The nature of the inhibition by vinblastine has been investigated with human platelet microsomes, measuring conversion of arachidonic acid to malondialdehyde and thromboxane B2 via spectrophotometric assay and RIA, respectively, determining arachidonate oxygenation by monitoring oxygen consumption, and identifying metabolites formed from [1-14C]arachidonic acid. Vinblastine was compared with other Vinca alkaloids and with structurally unrelated microtubule-active drugs. Vinca alkaloids were unique in causing dose-dependent inhibition of both malondialdehyde and thromboxane B2. Order of potency was vinblastine = vincristine = vindesine greater than leurosine greater than vinepidine. Inhibition of malondialdehyde and thromboxane B2 by 50 microM vinblastine was at least 60%. Microsomal cyclooxygenase was not inhibited by 200 microM vinblastine. Inhibition by vinblastine of [1-14C]arachidonic acid conversion to thromboxane B2 was associated with a 4-fold increase in prostaglandin E2 formation. Thromboxane B2, but not malondialdehyde, formation was inhibited by colchicine less than nocodazole much less than vinblastine. Results indicate that microsomal thromboxane synthetase is inhibited by Vinca alkaloids and other tubulin-binding drugs, and suggest that the action of vinblastine in inhibiting thromboxane synthesis, aggregation and release in intact platelets is not dependent upon its antimicrotubular actions.  相似文献   

10.
Prostanoid synthesis is limited by the availability of free arachidonic acid. This polyunsaturated fatty acid is liberated by phospholipases and usually is an intermediate of the deacylation-reacylation cycle of membrane phospholipids. In rat peritoneal macrophages, ethylmercurisalicylate (merthiolate) or N-ethylmaleimide (NEM) dose dependently inhibited the incorporation of arachidonic acid into cellular phospholipids, at lower concentrations specifically into phosphatidylcholine. Furthermore, merthiolate could be shown to be a rather selective inhibitor of lysophosphatidylcholine acyltransferase. In contrast, phospholipase A2 activity was not affected over a wide dose range. Consequently, macrophages showed a large increase in prostanoid synthesis (prostaglandin E, prostacyclin and thromboxane) in the presence of both lysophosphatide acyltransferase inhibiting agents. Similar results were obtained with human platelets, in which merthiolate increased the release of thromboxane. Addition of free arachidonic acid also enhanced prostanoid synthesis in macrophages. At optimal concentrations, merthiolate had no further augmenting effect. It is concluded that the rate of prostanoid synthesis is not only controlled by phospholipase A2 activity, but rather by the activity of the reacylating enzymes, mainly lysophosphatide acyltransferase.  相似文献   

11.
Thromboxane A2 (rabbit aorta-contracting substance) is a proaggregatory vasoconstrictive, oxygenated metabolite of arachidonic acid which was originally discovered in guinea pig lung perfusates during antigen-induced anaphylaxis. The specific stimuli which activate synthesis and the cellular source in the lung remain undefined. In order to study pulmonary thromboxane A2 (TXA2) synthesis, a cultured lung cell model has been used. Monolayer cultures of human diploid embryonic lung fibroblast (WI-38) metabolized exogenously supplied [14C]arachidonic acid to TXA2 as well as prostaglandin E2. Both were unequivocally identified by gas chromatography/mass spectrometry. Cellular phospholipids were labeled by preincubating cultures overnight with [14C]arachidonic acid. Release of thromboxane A2 into the culture fluid from these prelabeled cultures was stimulated by two phospholipase activating agents, mellitin and the calcium ionophore A23187. The lung cells also released TXA2 and prostaglandin in a dose-dependent fashion when treated with thrombin but not when exposed to trypsin. Bradykinin, an anaphylactic mediator in vivo, was a potent TXA2 releasing agent in this in vitro system whereas histamine was inactive. In addition, anaphylactic shock perfusates from guinea pig lung were shown to contain a factor (other than bradykinin) which activates fibroblasts TXA2 synthesis in these cultured lung cells. These experiments indicate that the lung fibroblast is probably a source of pulmonary thromboxane in vivo and that the cultured lung cell system described here is a useful model for defining the complex interactions of mediators of anaphylaxis and asthma.  相似文献   

12.
In the rat, diethylcarbamazine, imidazole and L 8027 do not modify the hypotensive activity of PGE2 and arachidonic acid. The formation of SRS-A from arachidonic acid does not compete with the synthesis of PG in the cardiovascular system of the rat. The thromboxane A2 does not participate in the hypotensive activity of arachidonic acid in the rat.  相似文献   

13.
Renal glomeruli have cyclo-oxygenase and lipoxygenase enzymes which convert arachidonic acid to prostaglandins, thromboxane and 12-hydroxyeicosatetraenoic acid. Glomerular epithelial and mesangial cells, in culture, also synthesize these arachidonate products. Angiotensin and vasopressin contract mesangial cells and stimulate mesangial synthesis of PGE2. PGE2, in the glomerulus, antagonizes the actions of angiotensin on the mesangium and hence reduces angiotensin-mediated glomerular contraction. Glomerular immune injury (nephrotoxic serum nephritis) augments glomerular production of prostaglandins and thromboxane. Thromboxane reduces glomerular function and inhibition of thromboxane synthesis preserves glomerular filtration rate and renal plasma flow in this disease model. Spontaneously hypertensive rats also have enhanced glomerular prostaglandin and thromboxane synthesis. Although acute inhibition of thromboxane synthesis will vasodilate the hypertensive rat kidney, chronic inhibition does not reduce blood pressure or increase renal blood flow.  相似文献   

14.
Intramuscular administration to female rabbits of 2 mg/kg ethinylestradiol every other day for 10 days increased the uptake and incorporation of [14C]arachidonic acid into platelet lipids, and increased the proportion of [14C]arachidonic acid released from platelets after stimulation by thrombin. The conversion of [14C]arachidonic acid to thromboxane B2 did not differ between the control and ethinylestradiol-treated groups. Thus, the results of this study indicate that the major site in the prostaglandin metabolic pathway influenced by estrogen is the incorporation and release of arachidonic acid in platelet phospholipids.  相似文献   

15.
Thromboxane B2, 6-keto-Prostaglandin F1 alpha, and Prostaglandin E2 release have been quantitated from cultured adult bovine endothelial cell monolayers and from ex Vivo vascular segments employing specific radioimmunoassays and thin layer chromatography. Release of all three prostaglandins was demonstrable from both endothelial cell systems under basal conditions and following exposure to the ionophore A23187 and arachidonic acid. In culture, the quantity of 6-keto-PGF1 alpha released was diminished compared to amounts released from the vessel segments while thromboxane B2 and prostaglandin E2 release were similar in the two endothelial model systems. However, the amount of thromboxane B2 assayed was small and the quantity of thromboxane A2 it represents is probably of little in vivo significance compared to prostacyclin.  相似文献   

16.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

17.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclooxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2α, prostacyclin and thromboxane A2. Prostaglandins E2 and F2α are the principal cyclo-oxygenase products of this interaction.We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2α by leukocytes.  相似文献   

18.
The TxA2 synthetase inhibitor, dazoxiben, and the TxA2 antagonist, +/- SQ 29,548, were examined for effects on release and vasoactivity of TxA2 and prostacyclin. Isolated perfused guinea pig lungs were used as the enzyme source from which TxA2 and prostacyclin were released in response to injections of arachidonic acid or bradykinin. Both dazoxiben and +/- SQ 29, 548 inhibited contraction of the superfused rat aorta and bovine coronary artery after arachidonic acid injection through the lung. +/- SQ 29,548 abolished contractions of the rat aorta, but significant aorta contracting activity persisted during dazoxiben treatment. Dazoxiben significantly inhibited arachidonate-induced release of TxA2 (immunoreactive TxB2) into the superfusate, but TxA2 release was significantly potentiated by +/- SQ 29,548. Thus, in the presence of enhanced TxA2 concentrations, +/- SQ 29,548 effectively antagonized the vasospastic effect of TxA2. Dazoxiben diverted a significantly greater amount of arachidonic acid into prostacyclin synthesis (immunoreactive 6-keto-PGF1 alpha), changing original coronary vasoconstriction into relaxation. +/- SQ 29,548 did not significantly modify lung prostacyclin synthesis. Moreover, with +/- SQ 29,548, the absence of TxA2-mediated coronary contraction unmasked active relaxation of the superfused bovine coronary artery, coincident with thromboxane and prostacyclin release. Dazoxiben consistently inhibited TxA2 synthesis and enhanced prostacyclin synthesis. +/- SQ 29,548 augmented TxB2 release in response to arachidonate, but not bradykinin, and did not significantly alter 6-keto-PGF1 alpha release in response to either arachidonate or bradykinin. In terms of vasoactivity measured in vitro, +/- SQ 29,548 and dazoxiben produced similar anti-vasospastic effects, although this was accomplished by completely different mechanisms.  相似文献   

19.
We investigated the covalent binding of intermediates in prostaglandin biosynthesis to tissue macromolecules. Following incubation of [1-14C]arachidonic acid with the microsomal fraction from guinea pig lung, ram or bovine seminal vesicle, human platelets, rabbit kidney, or rat stomach fundus, the amount of covalent binding of arachidonic acid metabolites expressed as percentage of total arachidonic acid metabolized varied from tissue to tissue ranging from 3% in human platelets to 18.2% in ram seminal vesicles. In general, the thromboxane synthesizing tissues had less covalently bound metabolites than the other tissues. The amount of covalently bound metabolites was increased in the guinea pig lung microsomes when the thromboxane synthetase inhibitor, N-0164, was added to the incubation mixture. The covalent binding of arachidonic acid metabolite(s) was greatly reduced by the addition of glutathione to the incubation mixture. In addition to the covalently bound metabolites, water-soluble metabolites derived from arachidonic acid metabolism were also observed. The amount of water-soluble metabolites was small in each tissue except for the rat stomach fundus. In the rat stomach fundus the water-soluble metabolites accounted for over 50% of the total metabolites. Conditions which would tend to increase or decrease the levels of free prostaglandin endoperoxides during the incubation of arachidonic acid with the microsomes gave increased or decreased levels of covalent binding. Our data suggest that the prostaglandin endoperoxides are responsible for the covalent binding observed during prostaglandin biosynthesis. This covalent binding to tissue macromolecules may be of physiological and pathological significance.  相似文献   

20.
Thromboxane-induced pulmonary vasoconstriction: involvement of calcium   总被引:3,自引:0,他引:3  
Infusion of tert-butyl hydroperoxide (t-bu-OOH) or arachidonic acid into rabbit pulmonary arteries stimulated thromboxane B2 (TxB2) production and caused pulmonary vasoconstriction. Both phenomena were blocked by cyclooxygenase inhibitors or a thromboxane synthase inhibitor. The increase in pulmonary arterial pressure caused by either t-bu-OOH or arachidonic acid infusion correlated with the concentration of TxB2 in the effluent perfusate. The concentration of TxB2 in the effluent perfusate, however, was always 10-fold greater after arachidonic acid infusion. In the rabbit pulmonary vascular bed lipoxygenase products did not appear involved in the vasoactive response to t-bu-OOH or exogenous arachidonic acid infusion. Calcium entry blockers or a calcium-free perfusate prevented the thromboxane-induced pulmonary vasoconstriction. Calmodulin inhibitors also blocked the pulmonary vasoconstriction induced by t-bu-OOH without affecting the production of TxB2 or prostacyclin. These results suggest that thromboxane causes pulmonary vasoconstriction by increasing cytosol calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号