首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
* Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.  相似文献   

3.
4.
5.
Gene duplication plays important roles in organismal evolution, because duplicate genes provide raw materials for the evolution of mechanisms controlling physiological and/or morphological novelties. Gene duplication can occur via several mechanisms, including segmental duplication, tandem duplication and retroposition. Although segmental and tandem duplications have been found to be important for the expansion of a number of multigene families, the contribution of retroposition is not clear. Here we show that plant SKP1 genes have evolved by multiple duplication events from a single ancestral copy in the most recent common ancestor (MRCA) of eudicots and monocots, resulting in 19 ASK (Arabidopsis SKP1-like) and 28 OSK (Oryza SKP1-like) genes. The estimated birth rates are more than ten times the average rate of gene duplication, and are even higher than that of other rapidly duplicating plant genes, such as type I MADS box genes, R genes, and genes encoding receptor-like kinases. Further analyses suggest that a relatively large proportion of the duplication events may be explained by tandem duplication, but few, if any, are likely to be due to segmental duplication. In addition, by mapping the gain/loss of a specific intron on gene phylogenies, and by searching for the features that characterize retrogenes/retrosequences, we show that retroposition is an important mechanism for expansion of the plant SKP1 gene family. Specifically, we propose that two and three ancient retroposition events occurred in lineages leading to Arabidopsis and rice, respectively, followed by repeated tandem duplications and chromosome rearrangements. Our study represents a thorough investigation showing that retroposition can play an important role in the evolution of a plant gene family whose members do not encode mobile elements.  相似文献   

6.
Zinc finger genes in mammalian genomes are frequently found to occur in clusters with cluster members appearing in a tandem array on the chromosome. It has been suggested that in situ gene duplication events are primarily responsible for the evolution of such clusters. The problem of inferring the series of duplication events responsible for producing clustered families is different from the standard phylogeny problem. In this paper, we study this inference problem using a graph called duplication model that captures the series of duplication events while taking into account the observed order of the genes on the chromosome. We provide algorithms to reconstruct a duplication model for a given data set. We use our method to hypothesize the series of duplication events that may have produced the ZNF45 family that appears on human chromosome 19.  相似文献   

7.
水稻和其他禾本科植物基因组多倍体起源的证据   总被引:5,自引:0,他引:5  
基因加倍(Gene duplication)被认为是进化的加速器。古老的基因组加倍事件已经在多个物种中被确定,包括酵母、脊椎动物以及拟南芥等。本研究发现水稻基因组同样存在全基因组加倍事件,大概发生在禾谷类作物分化之前,距今约7000万年。在水稻基因组中,共找到117个加倍区段(Duplicated block),分布在水稻的全部12条染色体,覆盖约60%的水稻基因组。在加倍区段,大约有20%的基因保留了加倍后的姊妹基因对(Duplicated pairs)。与此形成鲜明对照的是加倍区段的转录因子保留了60%的姊妹基因。禾本科植物全基因组加倍事件的确定对研究禾本科植物基因组的进化具有重要影响,暗示了多倍体化及随后的基因丢失、染色体重排等在禾谷类物种分化中扮演了重要角色。  相似文献   

8.
9.
The plant-specific expansin proteins constitute an ancient and major gene family known to have roles in regulating diverse biological processes in plants. Although the functions of many expansin genes have been identified in wheat and other species, little is known about the evolution and genomic locations of the expansin genes in wheat (Triticum aestivum). In this study, a total of 87 expansin genes were identified in the wheat genome, including 52 EXPAs, 42 EXPBs and 4 EXLAs. The EXLB gene was not found in the wheat genome. Phylogenetic tree and comparative analysis revealed amplification of the EXPBs in rice, maize and wheat. The predicted wheat expansins were distributed across 14 of 21 chromosomes with different densities, 3 tightly co-located clusters and 15 paralogous pairs, indicating that tandem duplication and segmental duplication events also played roles in the evolution of expansins in wheat. In addition, the gene structures and conserved protein domains of wheat expansins suggest high levels of conservation within the phylogenetic subgroups. Analysis of a published microarray database showed that most wheat expansin genes exhibit different expression levels in different tissues and developmental stages. To our knowledge, this is the first report of a genome-wide analysis of the wheat expansin gene family, which should provide valuable information for further elucidating the classification and putative functions of the entire gene family.  相似文献   

10.
During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently.  相似文献   

11.
Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses.  相似文献   

12.
D M Obenland  U Simmen  T Boller    A Wiemken 《Plant physiology》1993,101(4):1331-1339
Three soluble isoforms of invertase (beta-fructofuranosidase; EC 3.2.1.26) were purified from 7-d-old primary leaves of barley (Hordeum vulgare L.). Invertase I, a monomeric protein of 64 kD, was purified to apparent homogeneity as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Invertases IIA and IIB, multimeric proteins with molecular masses of the 116 and 155 kD, were purified 780- and 1370-fold, respectively, but were not yet homogeneous. Extracts of epidermal strips of leaves contained only invertase IIB. The specific activity of invertase was more than 100-fold higher in the epidermis than in the mesophyll. All three isoforms were acidic invertases, with pH optima of around 5.0 and little activity in the alkaline range. Invertase I had a Km for sucrose of 8.1 mM, and invertases IIA and IIB had much lower values of 1.0 and 1.7 mM, respectively. Invertase I was more than 2-fold more resistant than the other two invertases to the inhibitors HgCl2 and pyridoxal. All three constitutive invertases were found to act also as sucrose-sucrose fructosyltransferases when supplied with high concentrations of sucrose, forming 1-kestose as principal product. However, the fructosyltransferase activity of all three enzymes was inhibited by pyridoxal in the same way as their invertase activity. This characteristic clearly differentiates them from the inducible sucrose-sucrose fructosyltransferase of barley leaves, the activity responsible for the initial steps of fructan biosynthesis, which has previously been shown to be insensitive to pyridoxal.  相似文献   

13.
Most disease resistance genes in plants encode NBS-LRR proteins. However, in woody species, little is known about the evolutionary history of these genes. Here, we identified 459 and 330 respective NBS-LRRs in grapevine and poplar genomes. We subsequently investigated protein motif composition, phylogenetic relationships and physical locations. We found significant excesses of recent duplications in perennial species, compared with those of annuals, represented by rice and Arabidopsis. Consequently, we observed higher nucleotide identity among paralogs and a higher percentage of NBS-encoding genes positioned in numerous clusters in the grapevine and poplar. These results suggested that recent tandem duplication played a major role in NBS-encoding gene expansion in perennial species. These duplication events, together with a higher probability of recombination revealed in this study, could compensate for the longer generation time in woody perennial species e.g. duplication and recombination could serve to generate novel resistance specificities. In addition, we observed extensive species-specific expansion in TIR-NBS-encoding genes. Non-TIR-NBS-encoding genes were poly- or paraphyletic, i.e. genes from three or more plant species were nested in different clades, suggesting different evolutionary patterns between these two gene types.  相似文献   

14.
Kim JY  Mahé A  Guy S  Brangeon J  Roche O  Chourey PS  Prioul JL 《Gene》2000,245(1):89-102
Two maize putative cell-wall invertase genes (Incw3 and Incw4) have been isolated by screening a genomic DNA library (Zea mays L. W22) using the cDNA probes encoding the two maize cell-wall invertases Incw1 and Incw2. The Incw3 and Incw4 genes contain six exons/five introns and five exons/four introns, respectively. The protein sequences deduced from both genes revealed a beta-fructosidase motif and a cysteine catalytic site known to be conserved in invertase genes. A detailed analysis of the protein and nucleotide sequences provides evidence that the Incw3 and the Incw4 genes encode putative cell-wall invertases. Furthermore, the isoelectric point deduced from the INCW4 protein sequence suggested that the Incw4 gene may encode a unique type of cell-wall invertase unbound in the apoplast. Gene expression studies using RT-PCR and in-situ RT-PCR hybridization showed that the Incw3 expression is organ/tissue-specific and developmentally regulated. In contrast, the Incw4 gene is constitutively expressed in all vegetative and reproductive tissues tested.  相似文献   

15.
Fridman E  Zamir D 《Plant physiology》2003,131(2):603-609
Comparative analysis of complex developmental pathways depends on our ability to resolve the function of members of gene families across taxonomic groups. LIN5, which belongs to a small gene family of apoplastic invertases in tomato (Lycopersicon esculentum), is a quantitative trait locus that modifies fruit sugar composition. We have compared the genomic organization and expression of this gene family in the two distantly related species: tomato and Arabidopsis. Invertase family members reside on segmental duplications in the near-colinear genomes of tomato and potato (Solanum tuberosum). These chromosomal segments are syntenically duplicated in the model plant Arabidopsis. On the basis of phylogenetic analysis of genes in the microsyntenic region, we conclude that these segmental duplications arose independently after the separation of the tomato/potato clade from Arabidopsis. Rapid regulatory divergence is characteristic of the invertase family. Interestingly, although the processes of gene duplication and specialization of expression occurred separately in the two species, synteny-based orthologs from both clades acquired similar organ-specific expression. This similar expression pattern of the genes is evidence of comparable evolutionary constraints (parallel evolution) rather than of functional orthology. The observation that functional orthology cannot be identified through analysis of expression similarity highlights the caution that needs to be exercised in extrapolating developmental networks from a model organism.  相似文献   

16.
The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.  相似文献   

17.
18.
EST and genomic DNA sequencing efforts for rice and wheat have provided the basis for interpreting genome organization and evolution. In this study we have used EST and genomic sequencing information and a bioinformatic approach in a two-step strategy to align portions of the wheat and rice genomes. In the first step, wheat ESTs were used to identify rice orthologs and it was shown that wheat 3S and rice 1 contain syntenic units with intrachromosomal rearrangements. Further analysis using anchored rice contiguous sequences and TBLASTX alignments in a second alignment step showed interruptions by orthologous genes that map elsewhere in the wheat genome. This indicates that gene content and order is not as conserved as large chromosomal blocks as previously predicted. Similarly, chromosome 7L contains syntenic units with rice 6 and 8 but is interrupted by combinations of intrachromosomal and interchromosomal rearrangements involving syntenic units and single gene orthologs from other rice chromosome groups. We have used the rice sequence annotations to identify genes that can be used to develop markers linked to biosynthetic pathways on 3BS controlling xanthophyll production in wheat and thus involved in determining flour colour.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

19.
CBF/DREB1 proteins are the most important regulators of the cold temperature signaling pathway in many plants. CBF genes are candidates for low-temperature tolerance QTL in wheat and barley. Ten novel putative CBF cDNAs of perennial ryegrass (Lolium perenne L.) have been isolated from cold-treated leaf tissue. Their primary structures contain some conserved motifs, characteristic of the gene class. Phylogenetic analysis revealed that LpCBF genes were attributable to the HvCBF3-, and HvCBF4-subgroups following the previously proposed classification of barley CBF genes. RT-PCR analysis revealed that the expression of LpCBF genes was rapidly induced in response to low temperature and that the expression pattern under the low-temperature conditions for a long period was different between the various LpCBF genes. Five of the ten LpCBF genes were assigned to the genetic linkage map using the p150/112 reference mapping population. LpCBFIb, LpCBFII, LpCBFIIIb and LpCBFIIIc were mapped on LG5 forming a cluster within 2.2 cM, while LpCBFVb was located on LG1. Based on comparative genetic studies, conserved synteny for CBF gene family was observed between the Triticeae cereals and perennial ryegrass. Information on the perennial ryegrass CBF genes at both the molecular and genetic level obtained in this study would be useful for the further study on the role of CBF genes and low-temperature tolerance in grasses.  相似文献   

20.
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ~9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号