首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
If the enzymes responsible for biosynthesis of a given amino acid are repressed and the cognate amino acid pool suddenly depleted, then derepression of these enzymes and replenishment of the pool would be problematic, if the enzymes were largely composed of the cognate amino acid. In the proverbial "Catch 22", cells would lack the necessary enzymes to make the amino acid, and they would lack the necessary amino acid to make the needed enzymes. Based on this scenario, we hypothesize that evolution would lead to the selection of amino acid biosynthetic enzymes that have a relatively low content of their cognate amino acid. We call this the "cognate bias hypothesis". Here we test several implications of this hypothesis directly using data from the proteome of Escherichia coli. Several lines of evidence show that low cognate bias is evident in 15 of the 20 amino acid biosynthetic pathways. Comparison with closely related Salmonella typhimurium shows similar results. Comparison with more distantly related Bacillus subtilis shows general similarities as well as significant differences in the detailed profiles of cognate bias. Thus, selection for low cognate bias plays a significant role in shaping the amino acid composition for a large class of cellular proteins.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

15.
16.
Growth conditions that result in the accumulation of the tryptophan intermediate indoleglycerol phosphate or of the histidine intermediate imidazoleglycerol phosphate cause mycelia of Neurospora crassa to exhibit an immediate and sustained increase in the differential rate at which the biosynthetic enzymes of the tryptophan, histidine, and arginine pathways are synthesized. These accumulated intermediates are shown to be inhibitors of the activity of aminoacyltransfer ribonucleic acid (tRNA) synthetases, as judged by an in vitro esterification assay. The tryptophan intermediate is shown to inhibit the charging of tryptophan, and the histidine intermediate is shown to inhibit charging of histidine. The inhibitions noted are consistent with the finding that the level of charged tRNATrp is decreased significantly in cells that have accumulated indoleglycerol phosphate and that of tRNAHis is decreased significantly in cells that have accumulated imidazoleglycerol phosphate. These results are interpreted as support for the involvement of aminoacyl-tRNA species in mediating cross-pathway regulation of the tryptophan, histidine, and arginine biosynthetic pathways as proposed in Lester's polyrepressor hypothesis (G. Lester, 1971). the correlations noted lead to the conclusion that Neurospora utilizes regulatory mechanisms that have the ability to react to changes in the level of charging of tRNA species.  相似文献   

17.
Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae contain similar levels of four enzymes of branched-chain amino acid biosynthesis: acetohydroxy acid synthase, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. Following growth at low partial pressures of H2-CO2, the levels of these enzymes in extracts of M. voltae are reduced three- to fivefold, which suggests that their synthesis is regulated. The enzymes from M. aeolicus were found to be similar to the eubacterial and eucaryotic enzymes with respect to molecular weights, pH optima, kinetic properties, and sensitivities to O2. The acetohydroxy acid isomeroreductase has a specific requirement for Mg2+, and other divalent cations were inhibitory. It was stimulated threefold by K+ and NH4+ ions and was able to utilize NADH as well as NADPH. The partially purified enzyme was not sensitive to O2. The dihydroxy acid dehydratase is extremely sensitive to O2, and it has a half-life under 5% O2 of 6 min at 25 degrees C. Divalent cations were required for activity, and Mg2+, Mn2+, Ni2+, Co2+, and Fe2+ were nearly equally effective. In conclusion, the archaebacterial enzymes are functionally homologous to the eubacterial and eucaryotic enzymes, which implies that this pathway is very ancient.  相似文献   

18.
Genetic lesions responsible for amino acid requirements in several species of multiple auxotrophic lactobacilli were investigated. Systematic attempts were made to isolate mutants that could grow in the absence of each of the amino acids required by the parental strains of Lactobacillus plantarum, L. casei, L. helveticus, and L. acidophilus. After treatment with appropriate mutagens, such mutants could be obtained with respect to many but not all required amino acids. Successful isolation of mutants for a given amino acid means that a minor genetic lesion reparable by single-step mutations affects its biosynthesis; a failure to isolate mutants suggests the involvement of more extensive lesions. Analysis of these results as well as the specific requirements exhibited by the parental strains revealed certain regularities; some of the biosynthetic pathways for individual amino acids were virtually unaffected by more extensive lesions in at least species tested, whereas others were affected by more extensive lesions in at least some species. Both the number and the kind of pathways affected by extensive lesions differed appreciably among different species. Furthermore, the growth response of the parental strains to some putative amino acid precursors revealed a clear correlation between the extent of genetic lesions and the occurrence and location of a genetic block(s) for a given pathway. These findings are discussed in relation to the phylogeny, ecology, and evolution of lactic acid bacteria.  相似文献   

19.
20.
Liu X  Bush DR 《Amino acids》2006,30(2):113-120
Recent studies have shown that there are more than 50 amino acid transporter genes in the Arabidopsis genome. This abundance of amino acid transporters implies that they play a multitude of fundamental roles in plant growth and development. Current research on the expression and regulation (i.e., tissue-specific expression and regulation of expression in response to nutrient and environmental changes) of these genes has provided useful information about the functional significance of plant amino acid transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号