首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Mouse myeloma cells were fused with splenocytes from a mouse that had been immunized with RNA polymerase I purified from a rat hepatoma. Hybridoma cells were selected and colonies secreting antibodies directed against the enzyme were detected by analysis of cell culture supernatants in a solid phase radioimmunoassay. Two of these cell lines were grown on a larger scale and the interaction between the immunoglobulins obtained from them and RNA polymerase I was studied in detail. Antibodies from both of the hybridoma cell lines were able to inhibit DNA-dependent RNA synthesis catalyzed by RNA polymerases I and III, but not that catalyzed by polymerase II. The antibodies were also capable of reducing the RNA chain elongation reaction catalyzed either by RNA polymerase I associated with isolated nucleoli or by enzyme preinitiated in vitro on calf thymus DNA. Inhibition of RNA polymerase I activity by the monoclonal antibodies was inversely related to the nucleotide concentration. In contrast, the DNA concentration had relatively little effect on inhibition by the antibodies. Analysis of immune complex formation between the antibodies and isolated individual enzyme subunits demonstrated that the monoclonal antibodies were directed against the largest (Mr = 190,000) polypeptide of the polymerase I. These data indicate that the largest subunit of RNA polymerase I contains an immunological determinant in common with RNA polymerase III and suggest that the polymerase I polypeptide of Mr = 190,000 contains a catalytic center involved in RNA chain elongation.  相似文献   

6.
7.
8.
Four monoclonal antibodies against chicken DNA polymerase alpha were obtained from mouse hybridomas (see ref. 1). Two of them, 4-2D and 4-8H, recognized different epitopes of the DNA polymerase alpha-DNA primase complex as determined by a competitive enzyme-linked immunosorbent assay. Antibody 4-8H partially (about 30%) neutralized the combined activity of primase-DNA polymerase alpha as well as the DNA polymerase alpha activity. In contrast, antibody 4-2D did not neutralize DNA polymerase alpha activity, but neutralized the primase-DNA polymerase alpha activity extensively (up to 80%). Furthermore, although an immunoaffinity column made with 4-8H antibody retained virtually all of the DNA polymerase alpha with and without associated primase, a column made with 4-2D antibody did not bind DNA polymerase alpha without the primase, but retained the enzyme associated with the primase. These results indicate that 4-8H monoclonal antibody is specific for DNA polymerase alpha and 4-2D monoclonal antibody is specific for the primase or a special structure present in the primase-DNA polymerase alpha complex.  相似文献   

9.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

10.
11.
12.
Rat liver arginase was purified and five monoclonal antibodies were produced by fusion of spleen cells from a Balb/c mouse and the myeloma cell line P3-X36-Ag-U1. One, R2D19, of five antibodies belonged to the IgG2a subclass, the other four, R1D81, R1G11, R2E10, and R2G51, were of the IgG1 type. The R1D81 cross-reacted with human liver arginase. This antibody inhibited the arginase activity, competing with arginine. These results suggest that R1D81 binds to the catalytic site of arginase. The R2D19 also inhibited the enzyme activity but acted as a noncompetitive inhibitor. With the use of R1D81 and a polyclonal anti-human liver arginase antibody conjugated with alkaline phosphatase, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed for the quantification of human arginase. Specificity of monoclonal antibodies for rat liver arginase was examined by means of the sandwich ELISA. Eight pairs of monoclonal antibodies could form a sandwich with the arginase. Only the R2E10 could be used for both the first and the second antibody in the sandwich system. In other cases, monoclonal antibodies could not be interchanged between solid and liquid phase.  相似文献   

13.
14.
15.
Monoclonal antibodies are now a powerful tool in biology and medicine. Transglutaminase has been implicated in diverse biological functions, and the characteristics of its catalytic action are suitable for applied enzymology. In this study, we produced hybridoma cells which synthesize monoclonal antibodies against guinea pig liver transglutaminase by fusing mouse myeloma cells with spleen cells of mouse immunized with the enzyme protein. Eight hybridoma clones (coded 2F, 4B, 7C, 8B, 8D, 8E, 9F and 11C) were selected to produce monoclonal antibodies. The subclass of IgG produced by clone 9F was IgG2a and those from the seven other clones were all IgG1 The 9F antibody inhibited transglutaminase activity, but the other antibodies did not. A solid-phase antibody-binding assay showed that of these antibodies, 8D antibody has the highest affinity to the antigen. Transglutaminase protein in crude liver extract was identified with Western blotting analysis using 8D antibody as the probe.  相似文献   

16.
Monoclonal antibodies (mAbs) raised against the beta' subunit of the Escherichia coli RNA polymerase were used to probe the structure and function of this subunit. Of the five anti-beta' monoclonal antibodies studied, only mAb 311G2 is a strong inhibitor of RNA polymerase activity. This antibody binds to an epitope which is exposed in both the assembled holoenzyme and isolated beta' subunit. In contrast, the null antibodies bind to the free beta' subunit but very weakly to native RNA polymerase. It would appear that the beta' domain in which their epitopes reside is either conformationally altered or blocked due to interaction with other subunits in native RNA polymerase. In order to locate the positions of the epitopes for these five monoclonal antibodies, a series of overlapping deletion mutants have been constructed by partial restriction and religation of the beta' gene present in pT7 beta' (Zalenskaya, K., Lee, J., Gujuluva, C. N., Shin, Y. K., Slutsky, M., nd Goldfarb, A. (1990) Gene 89, 7-12). The presence of the epitopes for each of the anti-beta' monoclonal antibodies was assessed by Western blotting. The results indicate that the epitopes for mAb 340F11, mAb 370F3, mAb 371D6, and mAb 372B2 are located between amino acids 817-876. This region may be important in enzyme assembly or subunit-subunit interaction. The epitope for the inhibitory antibody, mAb 311G2, is located between amino acids 1047-1093. This region may be involved in the catalytic function of RNA polymerase.  相似文献   

17.
18.
19.
20.
A monoclonal 'natural' anti-H-2 IgM antibody produced by a hybridoma cell line OL-3.17 (H-2 m. 209) is described. The OL-3.17 monoclonal antibody was obtained by hybridization of spleen B cells from an unimmunized C57BL/Ka (H-2b) mouse in the serum of which simultaneously an IgM kappa paraprotein of high concentration and a natural H-2-specific antibody of high titer was detected. The monoclonal antibody OL-3.17 reacted strongly with H-2d and H-2s and weakly with H-2k,q,r lymphocytes, thereby detecting a hitherto unknown H-2 public determinant. The target molecules for OL-3.17 cocapped with class-I H-2 antigens, but immunoprecipitation of H-2 antigens was not achieved. This is the first monoclonal H-2-specific antibody obtained from a mouse without intentional immunization and, with high probability, was derived from a B-cell clone which produced natural H-2-specific antibodies detectable in the serum of the original mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号