首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Between 7 and 14 weeks of age, male Sprague-Dawley rats develop a greater than 50% loss in insulin-stimulated glucose transport in skeletal muscle. We treated rats aged 14 weeks with the beta-3 adrenergic agonist CL316,243 (1 mg/kg/day by minipump for 14 days). Treatment resulted in a 56% reduction in visceral fat (P < 0.05). Muscle mass and body weight were unchanged. In strips of soleus muscle isolated from rats treated with CL316,243, basal transport of [(3)H]-2-deoxyglucose (2-DOG) was unchanged (105.8 +/- 7.5 nmol/g/min for vehicle vs 122.0 +/- 8.7 for CL316,243). However, in rats treated with CL316,243, the increase in 2-DOG transport in response to a maximal concentration of insulin was substantially increased (55.5 +/- 13.1 nmol/g/min for vehicle vs 102.4 +/- 13.5 for CL316,243, P < 0.03). CL 316,243 caused no significant changes in fasting glucose, insulin, or free fatty acids. Treatment of soleus muscle strips in vitro with CL316,243 (either 0.1 nM or 1.0 nM for 120 min at 37 degrees C) had no effect either on basal 2-DOG transport or on insulin-stimulated transport. We conclude that the CL316,243 causes a reduction in visceral fat and a reversal of muscle insulin resistance. The effect CL 316,243 on muscle insulin responses appears to be indirect, as it did not occur in vitro.  相似文献   

2.
Subcutaneous administration of a mixed beta-agonist induced increases in muscle (+13%) and heart (+17%) weights, which were accompanied by a reduction in back (-13%) and perirenal (-27%) fat stores in young male rats, while no changes in liver were observed. The values of nitrogen retention (mg/day) were significantly higher in the beta-agonist treated animals (+16%) as well as those of muscle DNA content (+8%). On the other hand, no statistically significant changes in muscle protein synthetic activity (g protein synthetized/g RNA) were detected (control: 13.4 vs treated: 14.6), while muscle proteolytic activity was decreased (-9%) in those rats administered with the repartitioning agent. In this context, it is suggested that the anabolic effect of metaproterenol should be attributed to a reduction in muscle protein degradation rather than to changes in protein synthesis.  相似文献   

3.
Subcutaneous administration of a mixed beta-agonist to young rats induced no changes in animal growth and food conversion efficiency. However, a repartitioning effect was found with increases in lean tissue and decreases in body fat. The enhancement of muscle protein deposition was attributed to a fall in protein breakdown as muscular cathepsin A activity was lower in treated rats. A reduction of muscle reduction-oxidation state is associated to those changes in protein metabolism.  相似文献   

4.
The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5'-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

6.
The objective of this work was to test the hypothesis that a somatotropin (STH)-induced reduction in body fat would prolong the life span of the obese Zucker rat. Two experiments were conducted. In the first experiment, male and female, lean and obese Zucker rats were treated with STH (0 or 2 mg/d bovine STH) for 4 weeks, beginning at 7 months of age. Across phenotypes, STH treatment increased the growth rate by 159%, muscle weights by 14%, and circulating insulin-like growth factor (IGF)-1 by 23%, and decreased carcass fat by 21% (P < 0.05). The second experiment was a longevity trial to determine whether these changes in body composition would increase the life span of the obese rat. Beginning at 7 months of age, individually housed, male and female, lean and obese rats were assigned to daily STH treatments (0 or 2 mg/d). Rats were monitored daily, and sick or moribund rats were euthanized and necropsied to determine existing pathologies. The average life span of the lean rats was 661 days and was unaffected by STH treatment (639 days, NS) or gender. Average life span of the vehicle-injected obese rats (435 days) was less than that of the lean group (P < 0.001). STH treatment of the obese rats resulted in a further reduction of life span (349 days, P < 0.02). The predominant pathology observed across the treatment groups was renal disease, characterized by progressive glomerulonephropathy. Thus, although exogenous STH was able to reduce carcass lipid and to increase lean tissue mass in obese rats, there was no improvement in longevity. In contrast to the hypothesis, STH actually reduced the life span of the obese rat. It is likely that STH treatment accelerated the development of progressive glomerulonephropathy in the obese rat.  相似文献   

7.
After 28 days of hindlimb-suspension, insulin binding, 2-deoxy-D-glucose (2-DG) uptake, and glucose metabolism (glycolysis and glycogenesis) were determined at various insulin concentrations (0.2-30 nM) in soleus muscle of young (18-day-old) and adult (150-day-old) rats. Compared with age-matched controls the young (YS) and adult suspended (AS) rats had lower soleus and body weights and insulin levels (P less than 0.05). Per milligram of protein, insulin binding, 2-DG uptake, and the rate of glycolysis were increased by approximately 200%, and the rate of glycogenesis was increased approximately 100% in the YS group (P less than 0.05). Except for a reduction in glycogenesis (P less than 0.05) all other parameters also increased in the AS rats (P less than 0.05). On the basis of the whole muscle the rate of glucose metabolism (glycogenesis + glycolysis) was reduced in the YS rats (P less than 0.05), but in the AS rats glucose metabolism was similar to the controls. Thus the increased glucose metabolism (i.e., per milligram of protein) in the YS and AS groups may represent a compensatory response by atrophied muscle to attempt to sustain glucose removal from the circulation. Because greater insulin binding occurred in YS muscle [35% slow-twitch (ST)] than in the control group (70% ST), and greater insulin binding occurred in the AS (81% ST) than in the control group (90% ST), higher insulin binding capacities are not always related to a high proportion of ST muscle fibers. In conclusion, after hindlimb suspension, marked increments in insulin binding and glucose metabolism occur in the soleus muscle.  相似文献   

8.
9.
Systemic infection with Escherichia coli significantly decreased feed intake, slowed growth of the whole body and skeletal muscles, and severely inhibited muscle protein accumulation in both chicks and rats. Treatment with naproxen (6-methoxy-alpha-methyl-2-naphthaleneacetic acid), an inhibitor of prostaglandin production, decreased weight losses of body and muscle, and significantly inhibited muscle protein wasting in infected chicks and rats. E. coli infection increased net protein degradation by 44.8% (P less than 0.05) and prostaglandin E2 production by 148% (P less than 0.05) in isolated extensor digitorum communis muscle from chicks on day 2 after infection. Naproxen treatment significantly decreased net protein degradation and prostaglandin E2 production in infected chicks to values seen in muscles of healthy controls. Quantitatively and qualitatively similar results were seen in isolated rat epitrochlearis muscle.  相似文献   

10.
Maternal lipemia (L), one of the consequences of poorly controlled diabetes in gestation, was induced in pregnant rats by feedings of a diet containing 45% fat. The maternal condition was associated with fetal L and moderate ketonemia. L fetuses had an elevated liver glycerol kinase (EC 2.7.1.30), when assayed 1 day before term (L = 82.5 +/- 3.8 nmole/min X mg protein and controls (C) = 67.4 +/- 3.9 nmole/min X mg protein; means +/- SE, P less than 0.01). However, neither hepatic cytosolic glycerophosphate (GcPO4) dehydrogenase (EC 1.1.1.94) nor mitochondrial GcPO4 oxidase (EC 1.1.99.5) were altered. GcPO4 oxidase was lower in the striated muscle of L than in that of C fetuses (13.7 +/- 1.2 nmole/min X mg protein vs 17.2 +/- 0.5 nmole/min X mg protein, P less than 0.05). The results of the present study suggest that L, in utero, may cause an alteration in overall glycerol oxidative capacity in liver and GcPO4 in muscle. These changes appear to be compatible with a shift in the capacity of L fetuses to handle glycerol which may relate to postnatal fuel utilization by L offspring.  相似文献   

11.
The purposes of this study were 1) to determine satellite cell mitotic activity and myofiber nuclear density in the soleus muscle of aged rats and 2) to examine the effect of exercise training on these same parameters. Twenty-four-month-old specific pathogen-free female Fischer 344 rats were assigned to either a training or a control group. The trained group performed 10 wk of progressive treadmill running that resulted in a significant increase (P less than or equal to 0.05) in vastus lateralis muscle malate dehydrogenase activity compared with control rats. Training produced a doubling of soleus muscle satellite cell mitotic activity (trained 1.28 +/- 0.33, control 0.52 +/- 0.13 thymidine-labeled satellite cells per 1,000 nuclei; P less than or equal to 0.05). Training also resulted in a doubling in the number of damaged fibers in the soleus muscle (P less than or equal to 0.05). Mean myofiber nuclear density was unaltered by exercise training but varied as a function of soleus muscle fiber size. Nuclear density of a subpopulation of small fibers (cross-sectional area less than one standard deviation below the mean cross-sectional area of all fibers examined) was significantly higher (P less than or equal to 0.05) than in other fibers in the soleus muscle. A high nuclear density and small size suggest that these fibers were immature. In addition, the soleus muscle from trained rats had significantly more (P less than or equal to 0.05) small fibers with high nuclear density than muscle from control animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Borst SE  Bagby GJ 《Cytokine》2004,26(5):217-222
Overexpression of mRNA for tumor necrosis factor-alpha (TNF-alpha) has been observed in adipose tissue in several rodent models of insulin resistance. The purpose of the present study was to examine the expression of TNF-alpha protein during the onset of insulin resistance in maturing Sprague-Dawley (S-D) rats. Compared to 2 months, rats aged 5 and 12 months were glucose intolerant and fasting glucose was elevated at 12 months (p < 0.05). Compared to 2 months, insulin concentrations following glucose loading were elevated at 5 months (p < 0.05) and also at 12 months, but to a lesser degree. In isolated strips of soleus muscle, insulin-stimulated glucose transport was reduced by 38% and 59% between 2 and 5 months and between 2 and 12 months, respectively (p < 0.05), with no changes in basal transport. Insulin resistance was associated with decreased content of TNF-alpha protein in visceral and subcutaneous fat. TNF-alpha protein content was also decreased in tibialis anterior muscle, but was unchanged in soleus and red gastrocnemius muscles. Liver was the only tissue examined that showed an increase in TNF-alpha protein content. In vitro secretion of TNF-alpha protein was markedly reduced in explants of visceral and subcutaneous fat from mature, insulin-resistant animals, but TNF-alpha bioactivity in subcutaneous fat was maintained with age. These results indicate that the onset of insulin resistance in mature S-D rats is associated with reduced adipose expression of TNF-alpha. Our findings do not support the adipose-endocrine model of TNF-alpha in insulin resistance. Our findings do support a paracrine role for TNF-alpha or for a reduction in endogenous TNF-alpha inhibitors in insulin resistance.  相似文献   

13.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

14.
The efficacy of anabolic steroid treatment [0.3 or 0.9 mg nandrolone decanoate (Deca-Durabolin) per day] was examined in the context of sparing rodent fast-twitch plantaris and slow-twitch soleus muscle weight, sparing subcellular protein, and altering isomyosin expression in response to hindlimb suspension. Female rats were assigned to four groups (7 rats/group for 6 wk): 1) normal control (NC), 2) normal steroid (NS), 3) normal suspension (N-SUS), and 4) suspension steroid (SUS-S). Compared with control values for the plantaris and soleus muscles, suspension induced 1) smaller body and muscle weight (P less than 0.05), 2) losses in myofibril content (mg/muscle, P less than 0.05), and 3) shifts in the relative expression (expressed as %of total isomyosin) of isomyosins which favored lesser slow myosin and greater fast myosin isotypes (P less than 0.05). Steroid treatment of suspended animals (SUS-S vs. N-SUS) partially spared body and muscle weight (P less than 0.05) and spared plantaris but not soleus myofibril content (mg/muscle, P less than 0.05). However, steroid treatment did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs. NC), steroid treatment enhanced body and plantaris muscle weight but not soleus weight (P less than 0.05) and did not alter isomyosin expression in either muscle type. Collectively these data suggest that in young female rats anabolic steroids 1) enhance the body weight and the weight of a fast-twitch ankle extensor in normal rats, 2) ameliorate the loss in body weight, fast-twitch muscle weight and protein content and slow-twitch muscle weight associated with hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The mechanism by which human immunodeficiency virus (HIV)-1 infection in humans leads to the erosion of lean body mass is poorly defined. Therefore, the purpose of the present study was to determine whether transgenic (Tg) rats that constitutively overexpress HIV-1 viral proteins exhibit muscle wasting and to elucidate putative mechanisms. Over 7 mo, Tg rats gained less body weight than pair-fed controls exclusively as a result of a proportional reduction in lean, not fat, mass. Fast- and slow-twitch muscle atrophy in Tg rats did not result from a reduction in the in vivo-determined rate of protein synthesis. In contrast, urinary excretion of 3-methylhistidine, as well as the content of atrogin-1 and the 14-kDa actin fragment, was elevated in gastrocnemius of Tg rats, suggesting increased muscle proteolysis. Similarly, Tg rats had reduced cardiac mass, which was independent of a change in protein synthesis. This decreased cardiac mass was associated with a reduction in stroke volume, but cardiac output was maintained by a compensatory increase in heart rate. The HIV-induced muscle atrophy was associated with increased whole body energy expenditure, which was not due to an elevated body temperature or secondary bacterial infection. Furthermore, the atrophic response could not be attributed to the development of insulin resistance, decreased levels of circulating amino acids, or increased tissue cytokines. However, skeletal muscle and, to a lesser extent, circulating insulin-like growth factor I was reduced in Tg rats. Although hepatic injury was implicated by increased plasma levels of aspartate and alanine aminotransferases, hepatic protein synthesis was not different between control and Tg rats. Hence, HIV-1 Tg rats develop atrophy of cardiac and skeletal muscle, the latter of which results primarily from an increased protein degradation and may be related to the marked reduction in muscle insulin-like growth factor I.  相似文献   

16.
Association of resistin with visceral fat and muscle insulin resistance   总被引:3,自引:0,他引:3  
Borst SE  Conover CF  Bagby GJ 《Cytokine》2005,32(1):39-44
Maturing Sprague-Dawley (S-D) rats develop obesity and skeletal muscle insulin resistance. To investigate the relationship between fat mass and insulin responses, we performed surgical removal of the epididymal and retroperitoneal depots of visceral adipose tissue (VF) or sham surgery (SHAM) in male rats aged 4 months. At sacrifice, 30 days later, the mass of visceral fat was 48% lower (p<0.05) in VF- compared to SHAM, while subcutaneous fat was essentially unchanged. VF- animals displayed increased insulin responses in isolated strips of skeletal muscle. Insulin-stimulated glucose transport was increased 28% in soleus muscle (p<0.05), with a trend toward a 31% increase in extensor digitorum longus muscle (p=0.058). Glucose tolerance was not significantly affected by surgical fat removal. In VF- animals, serum resistin was reduced 26% (p<0.05) and serum adiponectin was reduced 30% (p<0.05), with trends for reductions in IL-4 (58% reduction, p=0.084) and IL-6 (56% reduction, p=0.123). TNF-alpha, leptin and free fatty acids (NEFAs) were unchanged. We conclude that in maturing S-D rats, increased visceral adiposity leads to an increase in systemic release in resistin and possibly interleukins. Elevation of circulating cytokines may play a role in the development of muscle insulin resistance.  相似文献   

17.
Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P < 0.05); refeeding reversed these changes (P < 0.05). Consistent with these effects being regulated by S6K1, activation of this kinase was suppressed by FD (-91%, P < 0.05) but was increased by refeeding. Gavaging rats subjected to FD with a mixture of amino acids partially restored muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P < 0.0001). Thus feeding stimulates fractional protein synthesis in skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.  相似文献   

18.
Prior studies suggest that estradiol and progesterone regulate body composition in growing female rats. Because these studies did not consider the confounding effect of changes in food intake, it remains unclear whether ovarian hormones regulate body composition independently of their effects on food intake. We utilized a pair-feeding paradigm to examine the effects of these hormones on body composition. In addition, skeletal muscle protein fractional synthesis rate and adipose tissue lipoprotein lipase activity were measured to examine pathways of substrate deposition into fat and fat-free tissue. Female Sprague-Dawley rats [pubertal: 7-8 wk old; 190 +/- 0.5 (SE) g] were separated into four groups: 1) sham-operated (S; n = 8), 2) ovariectomized plus placebo (OVX; n = 8), 3) ovariectomized plus estradiol (OVX+E; n = 8), and 4) ovariectomized plus progesterone (OVX+P; n = 8). All ovariectomized groups were pair-fed to the S group. Body composition was measured using total body electrical conductivity. The relative increase in fat-free mass was greater (P < 0.01) in the OVX group (31 +/- 2%) than in the S (17 +/- 2%), OVX+E (18 +/- 2%), and OVX+P (22 +/- 2%) groups. The fractional synthetic rates of gastrocnemius muscle protein paralleled changes in fat-free mass: OVX had a higher (P < 0.05) synthesis rate (21 +/- 3%/day) than S (12 +/- 2%/day), OVX+E (11 +/- 2%/day), and OVX+P (8 +/- 1%/day) groups. Body fat increased in the S group (31 +/- 7%; P < 0.01), whereas the OVX groups lost fat (OVX: -10 +/- 7%; OVX+E: -15 +/- 7%; OVX+P: -13 +/- 7%). No differences in lipoprotein lipase were found. Our results suggest that estradiol and progesterone may regulate the growth of fat and fat-free tissues in female rats. Moreover, ovarian hormones may influence skeletal muscle growth through their effects on skeletal muscle protein synthesis.  相似文献   

19.
The purpose of this study was to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). One day after sciatic nerve sectioning, when decreases in the stimulation of soleus 2-deoxyglucose (2-DG) uptake by insulin (-51%, P less than 0.001), contractions (-29%, P less than 0.05), or insulin and contractions in combination (-40%, P less than 0.001) were observed, there was a slight (-18%, NS) decrease in GLUT-4 protein. By day 3 of denervation, stimulation of 2-DG uptake by insulin (-74%, P less than 0.001), contractions (-31%, P less than 0.001), or the two stimuli in combination (-59%, P less than 0.001), as well as GLUT-4 protein (-52%, P less than 0.001), was further reduced. Soleus muscle from hindlimb-suspended rats, which develops an enhanced capacity for insulin-stimulated glucose transport, showed muscle atrophy similar to denervated soleus but, in contrast, displayed substantial increases in GLUT-4 protein after 3 (+35%, P less than 0.05) and 7 days (+107%, P less than 0.001). These results indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. We conclude that muscle activity is an important factor in the regulation of GLUT-4 expression in skeletal muscle.  相似文献   

20.
We have investigated the impact of compensatory overload on the content of acetylcholinesterase (AChe) molecular forms in the rat fast-twitch medial gastrocnemius (MG). Overload was induced by way of a bilateral tenotomy of the MG's functional synergists coupled to a daily walking training program (15 m/min, 30% incline, up to 60 min per session, 12-18 wks). This latter condition ensured that the MG were used on a regular basis. In comparison to control values, overloaded MG showed 25 and 19% increases (P less than 0.05) in muscle wet weight and protein concentration, respectively. The content in AChe (activity per muscle) was also increased in these MG (28%, P less than 0.05). Sedimentation analyses revealed a general elevation in the content of AChe molecular forms, with A8, G2, and G1 displaying significant changes (35-42%, P less than 0.05). In a second group of rats, daily running training (27 m/min, 30% incline, using the same timetable) was supplemented to the compensatory overload. In this group, the additional running training led to a greater hypertrophic response as attested to by increases (P less than 0.05) in the MG wet weight (41%) and protein concentration (35%) in comparison to controls. However, total AChe content of these muscles was increased to an extent similar to that observed in the MG subjected only to compensatory overload (24%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号